Improved Exact Solver for
the Weighted Max-SAT Problem

Adrian Kügel

Institute of Theoretical Computer Science, University of Ulm

July 10th, 2010
Motivation

- Max-SAT is NP-hard \rightarrow no efficient algorithm known
- Applications
 - Bioinformatics \rightarrow protein structure similarity
 - Electronic markets \rightarrow combinatorial auctions
 - Sports scheduling \rightarrow break minimization
 - Probabilistic reasoning \rightarrow Most Probable Explanation (MPE)
Max-SAT Definition

- Given a list of clauses C_1, \ldots, C_m
- Clause consists of disjunction of literals ($l_1 \lor l_2 \lor \ldots \lor l_k$)
- Literal is either x_i or $\overline{x_i}$
- Find assignment of Boolean variables x_1, \ldots, x_n that satisfies maximum number of clauses
- Clause is satisfied if at least one literal is assigned true
Instantiating a variable

- Assign a value to a variable x_i
- Remove literals from the clauses which have been assigned false
- Remove clauses which become satisfied
Example

\[C_1 = (x_1 \lor x_2 \lor x_6) \]
\[C_2 = (x_2 \lor \overline{x}_6) \]
\[C_3 = (\overline{x}_1 \lor x_3) \]
\[C_4 = (\overline{x}_1 \lor x_4) \]
\[C_5 = (\overline{x}_3 \lor \overline{x}_4) \]
\[C_6 = (x_1 \lor \overline{x}_2 \lor x_5) \]
\[C_7 = (x_1 \lor \overline{x}_2 \lor \overline{x}_5) \]

→ assign \(x_1 = \) true
C_1 = (true \lor x_2 \lor x_6)
C_2 = (x_2 \lor \overline{x}_6)
C_3 = (false \lor x_3)
C_4 = (false \lor x_4)
C_5 = (\overline{x}_3 \lor \overline{x}_4)
C_6 = (true \lor \overline{x}_2 \lor x_5)
C_7 = (true \lor \overline{x}_2 \lor \overline{x}_5)
Example

\[C_2 = (x_2 \lor \overline{x}_6) \]
\[C_3 = (x_3) \]
\[C_4 = (x_4) \]
\[C_5 = (\overline{x}_3 \lor \overline{x}_4) \]
Branch and Bound for Max-SAT

- Search space is a binary tree with 2^n nodes
- Each inner node corresponds to partial assignment
- Leaf nodes correspond to complete assignments
- Branching:
 - Select unassigned variable
 - Assign value
 - Process remaining clauses recursively
 - Assign opposite value
 - Process remaining clauses recursively
Lower Bound

- Idea: (over)estimate the best possible value of a subtree
- If estimation is worse than best value found so far, subtree can be skipped
- For minimization problems: lower bound $lb \leq$ minimum value in subtree
- Simplest lower bound Max-SAT: number of clauses unsatisfied by partial assignment
- Better: calculate lower bound by finding disjoint inconsistent subformulas
Finding inconsistent subformulas by unit propagation

- Unit clauses can only be satisfied by satisfying the literal
- Propagate literals of unit clauses until empty clause is derived
- Reconstruct which clauses are needed to derive empty clause
Example

\[C_2 = (x_2 \lor \bar{x}_3) \]
\[C_3 = (x_3) \]
\[C_4 = (x_4) \]
\[C_5 = (\bar{x}_3 \lor \bar{x}_4) \]

\[\rightarrow \text{Assign } x_3 = \text{true} \]
Example

\begin{align*}
C_2 &= (x_2 \lor \text{false}) \\
C_3 &= (\text{true}) \\
C_4 &= (x_4) \\
C_5 &= (\text{false} \lor \overline{x}_4)
\end{align*}
Example

\[C_2 = (x_2) \]
\[C_4 = (x_4) \]
\[C_5 = (x_4) \]

\[\rightarrow \text{Assign } x_4 = \text{true} \]
Example

\[C_2 = (x_2) \]
\[C_4 = (\text{true}) \]
\[C_5 = (\text{false}) \]
Example

\[C_2 = (x_2) \]
\[C_5 = () \]
Implication graph
One step further: failed literal detection

- Add a unit literal l to the formula
- Use unit propagation to detect inconsistent subformula F'
- $S_l = F' \setminus l$ is resolution proof of \overline{l}
- l is called a failed literal
- If l and \overline{l} are failed literals, $S_l \cup S_{\overline{l}}$ is inconsistent subformula
Improved algorithm

- Use failed literal detection during unit propagation to get new unit literals
- Whenever no unit literal is left, try to find a failed literal \(l \)
- If found
 - extract and store subformula \(S_l \) which is in conflict with \(l \)
 - add \(\overline{l} \) to the formula and continue with unit propagation
Difference between algorithms

- improved algorithm starts with unit propagation and uses failed literal detection in simplified formula
- after finding a failed literal \(l \), we do not stop if \(\bar{l} \) is no failed literal, but continue in simplified formula after propagating \(\bar{l} \)
- improved algorithm can be seen as a restricted sat solver (no branches, only unit clause learning) with unsatisfiable core extraction
Example

\[C_1 = (x_1 \lor x_2 \lor x_3) \]
\[C_2 = (x_2 \lor \overline{x}_3) \]
\[C_3 = (\overline{x}_1 \lor x_3) \]
\[C_4 = (\overline{x}_1 \lor x_4) \]
\[C_5 = (\overline{x}_3 \lor \overline{x}_4) \]
\[C_6 = (x_1 \lor \overline{x}_2 \lor x_5) \]
\[C_7 = (x_1 \lor \overline{x}_2 \lor \overline{x}_5) \]

→ no unit literal, starting failed literal detection
Example

\[C_1 = (x_1 \lor x_2 \lor x_3) \]
\[C_2 = (x_2 \lor \overline{x}_3) \]
\[C_3 = (\overline{x}_1 \lor x_3) \]
\[C_4 = (\overline{x}_1 \lor x_4) \]
\[C_5 = (\overline{x}_3 \lor \overline{x}_4) \]
\[C_6 = (x_1 \lor \overline{x}_2 \lor x_5) \]
\[C_7 = (x_1 \lor \overline{x}_2 \lor \overline{x}_5) \]
\[C_8 = (x_1) \]

→ adding \(x_1 \) to the formula
→ assign \(x_1 = \text{true} \)
Example

\[C_2 = (x_2 \lor \overline{x_3}) \]
\[C_3 = (x_3) \]
\[C_4 = (x_4) \]
\[C_5 = (\overline{x_3} \lor \overline{x_4}) \]
\[\rightarrow \ldots \text{continue as in the example before} \]
Example

\[S_{x_1} = \{ (x_3), (x_4), (\overline{x}_3 \lor \overline{x}_4) \} \]

\[\rightarrow \text{add } \overline{x}_1 \text{ to the formula} \]
Example

\[C_1 = (x_1 \lor x_2 \lor x_3) \]
\[C_2 = (x_2 \lor \overline{x}_3) \]
\[C_3 = (\overline{x}_1 \lor x_3) \]
\[C_4 = (\overline{x}_1 \lor x_4) \]
\[C_5 = (\overline{x}_3 \lor \overline{x}_4) \]
\[C_6 = (x_1 \lor \overline{x}_2 \lor x_5) \]
\[C_7 = (x_1 \lor \overline{x}_2 \lor \overline{x}_5) \]
\[C_8 = (\overline{x}_1) \]

→ assign \(x_1 = \text{false} \)
Example

\[C_1 = (x_2 \lor x_3) \]
\[C_2 = (x_2 \lor \overline{x}_3) \]
\[C_5 = (\overline{x}_3 \lor \overline{x}_4) \]
\[C_6 = (\overline{x}_2 \lor x_5) \]
\[C_7 = (\overline{x}_2 \lor \overline{x}_5) \]

\(\rightarrow \) failed literal detection, add \(x_2 \) to the formula
Example

\[C_1 = (x_2 \lor x_3) \]
\[C_2 = (x_2 \lor \overline{x}_3) \]
\[C_5 = (\overline{x}_3 \lor x_4) \]
\[C_6 = (\overline{x}_2 \lor x_5) \]
\[C_7 = (\overline{x}_2 \lor \overline{x}_5) \]
\[C_8 = (x_2) \]

\[\rightarrow \text{assign } x_2 = \text{true} \]
Example

\[C_5 = (\overline{x}_3 \lor \overline{x}_4) \]
\[C_6 = (x_5) \]
\[C_7 = (\overline{x}_5) \]
\[\rightarrow \text{assign } x_5 = \text{true} \]
$C_5 = (\overline{x}_3 \lor \overline{x}_4)$
$C_7 = ()$
→ empty clause found
→ x_2 is failed literal
→ $S_{x_2} = \{ (\overline{x}_2 \lor x_5), (\overline{x}_2 \lor \overline{x}_5) \}$
Example

\[C_1 = (x_2 \lor x_3) \]
\[C_2 = (x_2 \lor \overline{x}_3) \]
\[C_5 = (\overline{x}_3 \lor \overline{x}_4) \]
\[C_6 = (\overline{x}_2 \lor x_5) \]
\[C_7 = (\overline{x}_2 \lor \overline{x}_5) \]
\[C_8 = (\overline{x}_2) \]

\[\rightarrow \text{ add } \overline{x}_2 \text{ to the formula} \]
\[\rightarrow \text{ assign } x_2 = \text{false} \]
C_1 = (x_3) \\
C_2 = (\overline{x}_3) \\
C_5 = (\overline{x}_3 \vee \overline{x}_4) \\
\rightarrow \text{assign } x_3 = \text{true}
Example

\[C_2 = () \]
\[C_5 = (\overline{x_4}) \]
→ empty clause found
→ derive inconsistent subformula with implication graph
Optimizations

- Assign priority order to variables for failed literal detection
- Decrease priority of variables for which a failed literal has been found
- For each variable, check only the literal which occurs in more clauses
- Sometimes more than one failed literal can be detected by only one failed literal detection → use failed literal \(l \) for which \(S_l \) is smallest.
Example

\[C_1 = \overline{x}_1 \lor x_2 \]
\[C_2 = \overline{x}_2 \lor x_3 \]
\[C_3 = \overline{x}_3 \lor x_4 \]
\[C_4 = \overline{x}_3 \lor x_5 \]
\[C_5 = \overline{x}_4 \lor \overline{x}_5 \]

\(C_3, C_4, C_5 \) are resolution proof of \(x_3 \)

\[\rightarrow x_1, x_2 \text{ and } x_3 \text{ are failed literals} \]
Data structure

- for each literal keep list of clause pointers to clauses where literal occurs
- support lazy deletion of clause pointers
- each clause has a delete flag and deletion timestamp
- clause pointers are removed during traversal of clause pointer list when delete flag of clause is set to true
- when backtracking, it can be checked in constant time if clause pointer was deleted or not
Comparison of runtimes

Weighted Max-2-SAT formulas with 100 variables

- akmaxsat
- IUT-BMB-Maxsatz
- WMaxSatz
- IncWMaxSatz

Weighted Max-2-SAT formulas with 120 variables

- akmaxsat
- IUT-BMB-Maxsatz
- WMaxSatz
- IncWMaxSatz
Comparison of traversed nodes of search tree

Weighted Max-2-SAT formulas with 100 variables

Weighted Max-2-SAT formulas with 120 variables

Adrian Kügel
Institute of Theoretical Computer Science, University of Ulm
Improved Exact Solver for the Weighted Max-SAT Problem
Conclusions

- New propagation algorithm improves lower bound
- Smaller part of the search tree needs to be traversed
- Data structure improves runtime for high clauses-to-variables ratio
Any questions?

Thank you for your attention!