
Towards Efficient SAT Solving using

XOR-OR-AND Normal Forms
work-in-progress

Julian Danner

joint work with B. Andraschko and M. Kreuzer

1



XOR-OR-AND Normal Form
XNF

p xnf 3 4

-1+3 2 0

1+2+3 -3 0

3 1+2 0

-1+2 1 2 0

←→

∧ (¬X1 ⊕ X3) ∨ X2

(X1 ⊕ X2 ⊕ X3) ∨ ¬X3

X3 ∨ (X1 ⊕ X2)

(¬X1 ⊕ X2) ∨ X1 ∨ X2

Proposition Every formula is equisatisfiable to a formula in 2-XNF.

Y ↔ (L1 ∨ L2) ≡ (Y ∨ ¬L2) ∧ ((¬Y ⊕ L1) ∨ L2).

→ allows implication graph based solving

2



XOR-OR-AND Normal Form
XNF

p xnf 3 4

-1+3 2 0

1+2+3 -3 0

3 1+2 0

-1+2 1 2 0

←→

∧
Lineral

(¬X1 ⊕ X3) ∨ X2

(X1 ⊕ X2 ⊕ X3) ∨ ¬X3

X3 ∨ (X1 ⊕ X2)

(¬X1 ⊕ X2) ∨ X1 ∨ X2

Proposition Every formula is equisatisfiable to a formula in 2-XNF.

Y ↔ (L1 ∨ L2) ≡ (Y ∨ ¬L2) ∧ ((¬Y ⊕ L1) ∨ L2).

→ allows implication graph based solving

2



XOR-OR-AND Normal Form
XNF

p xnf 3 4

-1+3 2 0

1+2+3 -3 0

3 1+2 0

-1+2 1 2 0

←→

∧
Lineral

(¬X1 ⊕ X3) ∨ X2

(X1 ⊕ X2 ⊕ X3) ∨ ¬X3

XNF clauseX3 ∨ (X1 ⊕ X2)

(¬X1 ⊕ X2) ∨ X1 ∨ X2

Proposition Every formula is equisatisfiable to a formula in 2-XNF.

Y ↔ (L1 ∨ L2) ≡ (Y ∨ ¬L2) ∧ ((¬Y ⊕ L1) ∨ L2).

→ allows implication graph based solving

2



XOR-OR-AND Normal Form
XNF

p xnf 3 4

-1+3 2 0

1+2+3 -3 0

3 1+2 0

-1+2 1 2 0

←→ ∧
Lineral

(¬X1 ⊕ X3) ∨ X2

(X1 ⊕ X2 ⊕ X3) ∨ ¬X3

XNF clauseX3 ∨ (X1 ⊕ X2)

(¬X1 ⊕ X2) ∨ X1 ∨ X2

Proposition Every formula is equisatisfiable to a formula in 2-XNF.

Y ↔ (L1 ∨ L2) ≡ (Y ∨ ¬L2) ∧ ((¬Y ⊕ L1) ∨ L2).

→ allows implication graph based solving

2



XOR-OR-AND Normal Form
XNF

p xnf 3 4

-1+3 2 0

1+2+3 -3 0

3 1+2 0

-1+2 1 2 0

←→ ∧
Lineral

(¬X1 ⊕ X3) ∨ X2

(X1 ⊕ X2 ⊕ X3) ∨ ¬X3

XNF clauseX3 ∨ (X1 ⊕ X2)

(¬X1 ⊕ X2) ∨ X1 ∨ X2

Proposition Every formula is equisatisfiable to a formula in 2-XNF.

Y ↔ (L1 ∨ L2) ≡ (Y ∨ ¬L2) ∧ ((¬Y ⊕ L1) ∨ L2).

→ allows implication graph based solving

2



XOR-OR-AND Normal Form
XNF

p xnf 3 4

-1+3 2 0

1+2+3 -3 0

3 1+2 0

-1+2 1 2 0

←→ ∧
Lineral

(¬X1 ⊕ X3) ∨ X2

(X1 ⊕ X2 ⊕ X3) ∨ ¬X3

XNF clauseX3 ∨ (X1 ⊕ X2)

(¬X1 ⊕ X2) ∨ X1 ∨ X2

Proposition Every formula is equisatisfiable to a formula in 2-XNF.

Y ↔ (L1 ∨ L2) ≡ (Y ∨ ¬L2) ∧ ((¬Y ⊕ L1) ∨ L2).

→ allows implication graph based solving

2



XOR-OR-AND Normal Form
XNF

p xnf 3 4

-1+3 2 0

1+2+3 -3 0

3 1+2 0

-1+2 1 2 0

←→ ∧
Lineral

(¬X1 ⊕ X3) ∨ X2

(X1 ⊕ X2 ⊕ X3) ∨ ¬X3

XNF clauseX3 ∨ (X1 ⊕ X2)

(¬X1 ⊕ X2) ∨ X1 ∨ X2

Proposition Every formula is equisatisfiable to a formula in 2-XNF.

Y ↔ (L1 ∨ L2) ≡ (Y ∨ ¬L2) ∧ ((¬Y ⊕ L1) ∨ L2).

→ allows

SCCs, Failed Linerals, . . .

implication graph based solving

2



XOR-OR-AND Normal Form
XNF

p xnf 3 4

-1+3 2 0

1+2+3 -3 0

3 1+2 0

-1+2 1 2 0

←→ ∧
Lineral

(¬X1 ⊕ X3) ∨ X2

(X1 ⊕ X2 ⊕ X3) ∨ ¬X3

XNF clauseX3 ∨ (X1 ⊕ X2)

(¬X1 ⊕ X2) ∨ X1 ∨ X2

Proposition Every formula is equisatisfiable to a formula in 2-XNF.

Y ↔ (L1 ∨ L2) ≡ (Y ∨ ¬L2) ∧ ((¬Y ⊕ L1) ∨ L2).

→ allows

SCCs, Failed Linerals, . . .

implication graph based solving

2



Equivalent XNF Clauses

Logic

X1 ⊕ X2

(X1 ⊕ X2)∨ (¬X3 ⊕ X4)
←→

Algebra

x1 + x2 + 1

(x1 + x2 + 1) · (x3 + x4)

Definition C1 ∼ C2 iff S(C1) = S(C2); VC = ⟨1+ C⟩F2

Proposition

C1 ∼ C2 ⇐⇒ VC1
= VC2

or 1 ∈ VC1
∩ VC2

Corollary For i ̸= j

{L1, . . . , Lk } ∼ {L1, . . . , Li ⊕ Lj , . . . , Lk }

Corollary
C is a tautology ⇐⇒ 1 ∈ VC

3



Equivalent XNF Clauses

Logic

X1 ⊕ X2

{X1 ⊕ X2, ¬X3 ⊕ X4 }
←→

Algebra

x1 + x2 + 1

{ x1 + x2 + 1, x3 + x4 }

Definition C1 ∼ C2 iff S(C1) = S(C2); VC = ⟨1+ C⟩F2

Proposition

C1 ∼ C2 ⇐⇒ VC1
= VC2

or 1 ∈ VC1
∩ VC2

Corollary For i ̸= j

{L1, . . . , Lk } ∼ {L1, . . . , Li ⊕ Lj , . . . , Lk }

Corollary
C is a tautology ⇐⇒ 1 ∈ VC

3



Equivalent XNF Clauses

Logic

X1 ⊕ X2

{X1 ⊕ X2, ¬X3 ⊕ X4 }
←→

Algebra

x1 + x2 + 1

{ x1 + x2 + 1, x3 + x4 }

Definition C1 ∼ C2 iff S(C1) = S(C2); VC = ⟨1+ C⟩F2

Proposition

C1 ∼ C2 ⇐⇒ VC1
= VC2

or 1 ∈ VC1
∩ VC2

Corollary For i ̸= j

{L1, . . . , Lk } ∼ {L1, . . . , Li ⊕ Lj , . . . , Lk }

Corollary
C is a tautology ⇐⇒ 1 ∈ VC

3



Equivalent XNF Clauses

Logic

X1 ⊕ X2

{X1 ⊕ X2, ¬X3 ⊕ X4 }
←→

Algebra

x1 + x2 + 1

{ x1 + x2 + 1, x3 + x4 }

Definition C1 ∼ C2 iff S(C1) = S(C2); VC = ⟨1+ C⟩F2

Proposition

C1 ∼ C2 ⇐⇒ VC1
= VC2

or 1 ∈ VC1
∩ VC2

Corollary For i ̸= j

{L1, . . . , Lk } ∼ {L1, . . . , Li ⊕ Lj , . . . , Lk }

Corollary
C is a tautology ⇐⇒ 1 ∈ VC

3



Equivalent XNF Clauses

Logic

X1 ⊕ X2

{X1 ⊕ X2, ¬X3 ⊕ X4 }
←→

Algebra

x1 + x2 + 1

{ x1 + x2 + 1, x3 + x4 }

Definition C1 ∼ C2 iff S(C1) = S(C2); VC = ⟨1+ C⟩F2

Proposition

C1 ∼ C2 ⇐⇒ VC1
= VC2

or 1 ∈ VC1
∩ VC2

Corollary For i ̸= j

{L1, . . . , Lk } ∼ {L1, . . . , Li ⊕ Lj , . . . , Lk }

Corollary
C is a tautology ⇐⇒ 1 ∈ VC

3



Equivalent XNF Clauses

Logic

X1 ⊕ X2

{X1 ⊕ X2, ¬X3 ⊕ X4 }
←→

Algebra

x1 + x2 + 1

{ x1 + x2 + 1, x3 + x4 }

Definition C1 ∼ C2 iff S(C1) = S(C2); VC = ⟨1+ C⟩F2

Proposition

C1 ∼ C2 ⇐⇒ VC1
= VC2

or 1 ∈ VC1
∩ VC2

Corollary For i ̸= j

{L1, . . . , Lk } ∼ {L1, . . . , Li ⊕ Lj , . . . , Lk }

Corollary
C is a tautology ⇐⇒ 1 ∈ VC

3



ANF to XNF converts Algebraic Normal Form (ANF) to XNF.

ASCON-128 format #vars #cls/polys avg cls len

– ANF 6080 11 904 –
anf to xnf XNF 12 224 17 920 1.64
SageMath CNF 26 048 260 416 4.79
ApCoCoA CNF-XOR 28 545 158 809 3.59
bosphorus CNF 49 289 1 424 034 5.83

→ cryptographic instances have compact representation

4



ANF to XNF converts Algebraic Normal Form (ANF) to XNF.

ASCON-128 format #vars #cls/polys avg cls len

– ANF 6080 11 904 –
anf to xnf XNF 12 224 17 920 1.64
SageMath CNF 26 048 260 416 4.79
ApCoCoA CNF-XOR 28 545 158 809 3.59
bosphorus CNF 49 289 1 424 034 5.83

→ cryptographic instances have compact representation

4



ANF to XNF converts Algebraic Normal Form (ANF) to XNF.

ASCON-128 format #vars #cls/polys avg cls len

– ANF 6080 11 904 –
anf to xnf XNF 12 224 17 920 1.64
SageMath CNF 26 048 260 416 4.79
ApCoCoA CNF-XOR 28 545 158 809 3.59
bosphorus CNF 49 289 1 424 034 5.83

→ cryptographic instances have compact representation

4



Gaußian Constraint Propagation

Definition A lineral is called forcing if it is a literal.

decision

new forcing
linerals

update
XNF clauses

new lineral

backtrack

linear algebra

G
a
u
ß
ia
n
C
o
n
st
ra
in
t
P
ro
p
a
g
a
ti
o
n

5



Gaußian Constraint Propagation

Definition A lineral is called forcing if it is a literal.

decision

new forcing
linerals

update
XNF clauses

new lineral

backtrack

linear algebra

G
a
u
ß
ia
n
C
o
n
st
ra
in
t
P
ro
p
a
g
a
ti
o
n

5



Gaußian Constraint Propagation

Definition A lineral is called forcing if it is a literal.

decision

new forcing
linerals

update
XNF clauses

new lineral

backtrack

linear algebra

G
a
u
ß
ia
n
C
o
n
st
ra
in
t
P
ro
p
a
g
a
ti
o
n

decision

5



Gaußian Constraint Propagation

Definition A lineral is called forcing if it is a literal.

decision

new forcing
linerals

update
XNF clauses

new lineral

backtrack

linear algebra

G
a
u
ß
ia
n
C
o
n
st
ra
in
t
P
ro
p
a
g
a
ti
o
n

decision

new literal

5



Gaußian Constraint Propagation

Definition A lineral is called forcing if it is a literal.

decision

new forcing
linerals

update
XNF clauses

new lineral

backtrack

linear algebra

G
a
u
ß
ia
n
C
o
n
st
ra
in
t
P
ro
p
a
g
a
ti
o
n

decision

new literal

update
XNF clauses

5



Gaußian Constraint Propagation

Definition A lineral is called forcing if it is a literal.

decision

new forcing
linerals

update
XNF clauses

new lineral

backtrack

linear algebra

G
a
u
ß
ia
n
C
o
n
st
ra
in
t
P
ro
p
a
g
a
ti
o
n

decision

new literal

update
XNF clauses

new lineralunit cls?

5



Gaußian Constraint Propagation

Definition A lineral is called forcing if it is a literal.

decision

new forcing
linerals

update
XNF clauses

new lineral

backtrack

linear algebra

G
a
u
ß
ia
n
C
o
n
st
ra
in
t
P
ro
p
a
g
a
ti
o
n

decision

new literal

update
XNF clauses

new lineral

linear algebra

unit cls?

5



Gaußian Constraint Propagation

Definition A lineral is called forcing if it is a literal.

decision

new forcing
linerals

update
XNF clauses

new lineral

backtrack

linear algebra

G
a
u
ß
ia
n
C
o
n
st
ra
in
t
P
ro
p
a
g
a
ti
o
n

decision

new literal

update
XNF clauses

new lineral

linear algebra

unit cls?

forcing?

5



Gaußian Constraint Propagation

Definition A lineral is called forcing if it is a literal.

decision

new forcing
linerals

update
XNF clauses

new lineral

backtrack

linear algebra

G
a
u
ß
ia
n
C
o
n
st
ra
in
t
P
ro
p
a
g
a
ti
o
n

decision

new literal

update
XNF clauses

new lineral

linear algebra

backtrack

unit cls?

forcing?

co
n
fl
ic
t?

5



Gaußian Constraint Propagation

Definition A lineral is called forcing if it is a literal.

decision

new forcing
linerals

update
XNF clauses

new lineral

backtrack

linear algebra

G
a
u
ß
ia
n
C
o
n
st
ra
in
t
P
ro
p
a
g
a
ti
o
n

decision

new literal

update
XNF clauses

new lineral

linear algebra

backtrack

work-in-progress

linear algebra

unit cls?

forcing?

co
n
fl
ic
t?

5



Watched Linerals

Problem watching distinct literals from distinct linerals{
X1 ⊕ X2 ⊕ X3 ⊕ X4 , X1 ⊕ X2 ⊕ X5

}

{
X1 ⊕ X2

}∼
might miss unit clauses!

6



Watched Linerals

Problem watching distinct literals from distinct linerals{
X1 ⊕ X2 ⊕ X3 ⊕ X4 , X1 ⊕ X2 ⊕ X5

}

{
X1 ⊕ X2

}∼
might miss unit clauses!

6



Watched Linerals

Problem watching distinct literals from distinct linerals{
X1 ⊕ X2 ⊕ X3 ⊕ X4 , X1 ⊕ X2 ⊕ X5

}

{
X1 ⊕ X2

}∼
might miss unit clauses!

6



Watched Linerals

Problem watching distinct literals from distinct linerals{
X1 ⊕ X2 ⊕ X3 ⊕ X4 , X1 ⊕ X2 ⊕ X5

}

{
X1 ⊕ X2

}∼
might miss unit clauses!

6



Watched Linerals

Problem watching distinct literals from distinct linerals{
X1 ⊕ X2 ⊕ X3 ⊕ X4 , X1 ⊕ X2 ⊕ X5

}
{

X1 ⊕ X2

}∼
might miss unit clauses!

6



Watched Linerals

Solution watch unshared literals from two distinct linerals

, change
representation if necessary

L1 :

L1 ⊕ L2 :L2 :

X3 ⊕ X4 X1 ⊕ X2⊕

X1 ⊕ X2 X5⊕

→ swap shared/unshared parts

→ XNF clauses can be efficiently managed by watch-lists

6



Watched Linerals

Solution watch unshared literals from two distinct linerals

, change
representation if necessary

L1 :

L1 ⊕ L2 :L2 :

X3 ⊕ X4 X1 ⊕ X2⊕

X1 ⊕ X2 X5⊕

→ swap shared/unshared parts

→ XNF clauses can be efficiently managed by watch-lists

6



Watched Linerals

Solution watch unshared literals from two distinct linerals

, change
representation if necessary

L1 :

L1 ⊕ L2 :L2 :

X3 ⊕ X4 X1 ⊕ X2⊕

X1 ⊕ X2 X5⊕

→ swap shared/unshared parts

→ XNF clauses can be efficiently managed by watch-lists

6



Watched Linerals

Solution watch unshared literals from two distinct linerals

, change
representation if necessary

L1 :

L1 ⊕ L2 :L2 :

X3 ⊕ X4 X1 ⊕ X2⊕

X1 ⊕ X2 X5⊕

→ swap shared/unshared parts

→ XNF clauses can be efficiently managed by watch-lists

6



Watched Linerals

Solution watch unshared literals from two distinct linerals, change
representation if necessary

L1 :

L1 ⊕ L2 :L2 :L1 ⊕ L2 :

X3 ⊕ X4 X1 ⊕ X2⊕

X5⊕X3 ⊕ X4

→ swap shared/unshared parts

→ XNF clauses can be efficiently managed by watch-lists

6



Watched Linerals

Solution watch unshared literals from two distinct linerals, change
representation if necessary

L1 :

L1 ⊕ L2 :L2 :L1 ⊕ L2 :

X3 ⊕ X4 X1 ⊕ X2⊕

X5⊕X3 ⊕ X4

→ swap shared/unshared parts

→ XNF clauses can be efficiently managed by watch-lists

6



Watched Linerals

Solution watch unshared literals from two distinct linerals, change
representation if necessary

L1 :

L1 ⊕ L2 :L2 :L1 ⊕ L2 :

X3 ⊕ X4 X1 ⊕ X2⊕

X5⊕X3 ⊕ X4

→ swap shared/unshared parts

→ XNF clauses can be efficiently managed by watch-lists

6



Resolution
Towards CDCL

{X1,¬X3} {¬X1, X2}

{X2,¬X3}

s-resolution [Horacek]⋃s
i=1{Li} ∪ F

⋃s
i=1{¬Li} ∪G⋃s−1

i=1 {Li ⊕ Li+1} ∪ F ∪G

→ CDCL in principle possible

7



Resolution
Towards CDCL

{X1,¬X3} {¬X1, X2}

{X2,¬X3}

{X1,¬X2,¬X3} {¬X1, X2}

{X1 ⊕ X2,¬X3}

s-resolution [Horacek]⋃s
i=1{Li} ∪ F

⋃s
i=1{¬Li} ∪G⋃s−1

i=1 {Li ⊕ Li+1} ∪ F ∪G

→ CDCL in principle possible

7



Resolution
Towards CDCL

{X1,¬X3} {¬X1, X2}

{X2,¬X3}

{X1,¬X2,¬X3} {¬X1, X2}

{X1 ⊕ X2,¬X3}

s-resolution [Horacek]⋃s
i=1{Li} ∪ F

⋃s
i=1{¬Li} ∪G⋃s−1

i=1 {Li ⊕ Li+1} ∪ F ∪G

→ CDCL in principle possible

7



Resolution
Towards CDCL

{X1,¬X3} {¬X1, X2}

{X2,¬X3}

{X1,¬X2,¬X3} {¬X1, X2}

{X1 ⊕ X2,¬X3}

s-resolution [Horacek]⋃s
i=1{Li} ∪ F

⋃s
i=1{¬Li} ∪G⋃s−1

i=1 {Li ⊕ Li+1} ∪ F ∪G

→ CDCL in principle possible

7



Resolution
Towards CDCL

{X1,¬X3} {¬X1, X2}

{X2,¬X3}

{X1,¬X2,¬X3} {¬X1, X2}

{X1 ⊕ X2,¬X3}

s-resolution [Horacek]⋃s
i=1{Li} ∪ F

⋃s
i=1{¬Li} ∪G⋃s−1

i=1 {Li ⊕ Li+1} ∪ F ∪G

→ CDCL in principle possible

7



Resolution
Towards CDCL

{X1,¬X3} {¬X1, X2}

{X2,¬X3}

{X1,¬X2,¬X3} {¬X1, X2}

{X1 ⊕ X2,¬X3}

s-resolution [Horacek]⋃s
i=1{Li} ∪ F

⋃s
i=1{¬Li} ∪G⋃s−1

i=1 {Li ⊕ Li+1} ∪ F ∪G

→ CDCL

weaken clauses & change representation before resolution
⇝ expensive linear algebra?

in principle possible

7



Current State
xnf solver

• Gaußian Constraint Propagation

◦ watched linerals ✓
◦ linear algebra ∼

→ Gauß-Jordan with backtracking?→ how to treat equivalent literals?

• conflict learning

◦ theory ✓
◦ implementation ∼

→ clause minimization?

• modern decision heuristics ×

• proofs for UNSAT instances ×

→ DPLL solver in C++ ✓

8



Current State
xnf solver

• Gaußian Constraint Propagation

◦ watched linerals ✓
◦ linear algebra ∼→ Gauß-Jordan with backtracking?→ how to treat equivalent literals?

• conflict learning

◦ theory ✓
◦ implementation ∼

→ clause minimization?

• modern decision heuristics ×

• proofs for UNSAT instances ×

→ DPLL solver in C++ ✓

8



Current State
xnf solver

• Gaußian Constraint Propagation

◦ watched linerals ✓
◦ linear algebra ∼→ Gauß-Jordan with backtracking?→ how to treat equivalent literals?

• conflict learning

◦ theory ✓
◦ implementation ∼

→ clause minimization?

• modern decision heuristics ×

• proofs for UNSAT instances ×

→ DPLL solver in C++ ✓

8



Current State
xnf solver

• Gaußian Constraint Propagation

◦ watched linerals ✓
◦ linear algebra ∼→ Gauß-Jordan with backtracking?→ how to treat equivalent literals?

• conflict learning

◦ theory ✓
◦ implementation ∼→ clause minimization?

• modern decision heuristics ×

• proofs for UNSAT instances ×

→ DPLL solver in C++ ✓

8



Current State
xnf solver

• Gaußian Constraint Propagation

◦ watched linerals ✓
◦ linear algebra ∼→ Gauß-Jordan with backtracking?→ how to treat equivalent literals?

• conflict learning

◦ theory ✓
◦ implementation ∼→ clause minimization?

• modern decision heuristics ×

• proofs for UNSAT instances ×

→ DPLL solver in C++ ✓

8



Current State
xnf solver

• Gaußian Constraint Propagation

◦ watched linerals ✓
◦ linear algebra ∼→ Gauß-Jordan with backtracking?→ how to treat equivalent literals?

• conflict learning

◦ theory ✓
◦ implementation ∼→ clause minimization?

• modern decision heuristics ×

• proofs for UNSAT instances ×

→ DPLL solver in C++ ✓

8



Experiments

XNF to ANF

L1 ∨ · · · ∨ Lk ←→ ℓ1 · · · ℓk

XNF to CNF-XOR

L1 ∨ · · · ∨ Lkxy
(Y1 ⊕ ¬L1) ∧ · · · ∧ (Yk ⊕ ¬Lk) ∧ (Y1 ∨ · · · ∨ Yk)

9



Experiments

XNF to ANF

L1 ∨ · · · ∨ Lk ←→ ℓ1 · · · ℓk

XNF to CNF-XOR

L1 ∨ · · · ∨ Lkxy
(Y1 ⊕ ¬L1) ∧ · · · ∧ (Yk ⊕ ¬Lk) ∧ (Y1 ∨ · · · ∨ Yk)

9



Experiments

0 50 100 150 200 250 300 350 400
instances

0

200

400

600

800

1000

C
P

U
ti

m
e

(s
)

graph xnf solver (XNF)

cms5 (CNF-XOR)

PolyBoRi (ANF)

xnf solver (XNF)

xnf bf (XNF)

bosphorus (ANF)

xnfsat (CNF-XOR)

Figure: Cactus plots for 400 random satisfiable 2-XNF in n variables and
3n clauses where n ∈ {21, . . . , 40}.

9



Experiments

0 50 100 150 200 250 300 350 400
instances

0

200

400

600

800

1000

C
P

U
ti

m
e

(s
)

graph xnf solver (XNF)

cms5 (CNF-XOR)

PolyBoRi (ANF)

xnf solver (XNF)

xnf bf (XNF)

bosphorus (ANF)

Figure: Cactus plots for 400 random 2-XNF in n variables and
3n clauses where n ∈ {21, . . . , 40}.

9



Experiments

0 50 100 150 200 250 300 350 400
instances

0

200

400

600

800

1000

C
P

U
ti

m
e

(s
)

graph xnf solver (XNF)

cms5 (CNF-XOR)

PolyBoRi (ANF)

xnf solver (XNF)

bosphorus (ANF)

Figure: Cactus plots for 400 random satisfiable ANFs in n indeterminates
and 2n quadratic polynomials where n ∈ {21, . . . , 40}.

Thank you for your attention!

9



Experiments

0 50 100 150 200 250 300 350 400
instances

0

200

400

600

800

1000

C
P

U
ti

m
e

(s
)

graph xnf solver (XNF)

cms5 (CNF-XOR)

PolyBoRi (ANF)

xnf solver (XNF)

bosphorus (ANF)

Figure: Cactus plots for 400 random satisfiable ANFs in n indeterminates
and 2n quadratic polynomials where n ∈ {21, . . . , 40}.

Thank you for your attention!

9


