Towards Efficient SAT Solving using
XOR-OR-AND Normal Forms

Julian Danner

joint work with B. Andraschko and M. Kreuzer

UNIVERSITY
//;}zIOF PASSAU

XOR-OR-AND Normal Form

(=X1 & X3) V Xz

/\ X1 X280 X3) V —=X3
X3 V (X1 @& Xy)
X1 X2) VX3V Xz

XOR-OR-AND Normal Form

Lineral

/\ (X1 X dX3) V —X3
X3V (X3 @ Xz)
(X1 X2) VX3 VX

XOR-OR-AND Normal Form

Lineral

-

/\ (X1 X dX3) V —X3

(X1 X2) VX3 VX

p xnf 3 4
-143 2 0
1+2+3 -3 0
3 1+2 0
-1+2.1 2 0

XOR-OR-AND Normal Form

—

A

Lineral

-

X1 X dX3) V —X;3

(X1 X2) VX3 VX

XOR-OR-AND Normal Form

Lineral
-1+43 2 0
— _
14243 -3 0 /\ (X1 X ®X3) V —X;3
-1+2 1 2 0 (X1 X2) VX3 VX

Every formula is equisatisfiable to a formula in 2-XNF.
Y & (L} \V Lz) = (Y \V4 —'Lz) /A (("Y@ L]) V Lz).

XOR-OR-AND Normal Form

Lineral
-1+43 2 0
— _
14243 -3 0 /\ (X1 X ®X3) V —X;3
-1+2 1 2 0 (X1 X2) VX3 VX

Every formula is equisatisfiable to a formula in 2-XNF.
Yo (Li VL) = (YV L) A ((=YeLl) VL)

— allows implication graph based solving

XOR-OR-AND Normal Form

Lineral

-1+43 2 0
X1 X dX3) V —X;3

 —
1+2+3 -3 0 /\

-1+2 1 2 0 (X1 X2) VX3 VX

Every formula is equisatisfiable to a formula in 2-XNF.
Y & (L] \V Lz) = (Y \V4 —'Lz) /A (("Y@ L]) V Lz).

— allows based solving

SCCs, Failed Linerals, ...

XOR-OR-AND Normal Form

Lineral

-1+43 2 0
X1 X dX3) V —X;3

 —
1+2+3 -3 0 /\

-1+2 1 2 0 (X1 ®X2) V X7V Xy

Every formula is equisatisfiable to a formula in 2-XNF.
Y & (L] \V Lz) = (Y \V4 —'Lz) /A (("Y@ [_1) V Lz).

— allows based solving

SCCs, Failed Linerals, ...

Equivalent XNF Clauses

Logic Algebra

X1 ® Xy X1 +x+1
(X3 @ X2) V (—X3 @ Xy) (x1+x2+1) - (x3+x4)

Equivalent XNF Clauses

Logic Algebra

X1 @ X2 . X1 +x+1
(X1 @ Xz, 7 X3 Xy} {(xi+x2+1, x3+x4}

Equivalent XNF Clauses

Logic Algebra

X7 @ X3 - X1 +x2+1
(X1 ® X2, X3P X4} {(xi+x2+1, x3+x4}

Ci ~ Gy iff S(Cy) =8(Ca); Ve =(1+C)r,

Equivalent XNF Clauses

Logic Algebra

X7 @ X3 - X1 +x2+1
(X1 ® X2, X3P X4} {(xi+x2+1, x3+x4}

Ci ~ Gy iff S(Cy) =8(Ca); Ve =(1+C)r,

G~C = VC1 = VC2 or 1€ VC] ﬂVCZ

Equivalent XNF Clauses

Logic Algebra
X1 @ X2 AN x1+x2+ 1
(X1 ® X2, X3P X4} {(xi+x2+1, x3+x4}

Ci ~ Gy iff S(Cy) =8(Ca); Ve =(1+C)r,

G~C = VC1 = VCz or 1€ VC] ﬂVCZ

For i]

{Lh---)l—k} ~ {I—h "')Li@l—j)"')l—k}

Equivalent XNF Clauses

Logic Algebra
X1 @ Xz e X1 +x2+ 1
{Xi® Xz, =X3 8 Xa} {(xi+x2+1, x3+x4}

Ci ~ Gy iff S(Cy) =8(Ca); Ve =(1+C)r,

G~C = VC1 = VCz or 1€ VC1 ﬂVCZ

For i]

{Liy oy L~ (Lo, Lo Ly, o, L)

Corollary

Cis a tautology < 1€ V¢

converts Algebraic Normal Form (ANF) to XNF.

converts Algebraic Normal Form (ANF) to XNF.

ASCON-128 ‘ format #vars #cls/polys avg cls len
- ANF 6080 11904 -
anf_to_xnf XNF 12224 17920 1.64
SageMath CNF 26 048 260416 4.79
ApCoCoA CNF-XOR 28545 158 809 3.59
bosphorus CNF 49289 1424034 5.83

converts Algebraic Normal Form (ANF) to XNF.

ASCON-128‘ format #vars #cls/polys avg cls len

- ANF 6080 11904 -
anf_to_xnf XNF 12224 17920 1.64
SageMath CNF 26 048 260416 4.79
ApCoCoA CNF-XOR 28545 158 809 3.59
bosphorus CNF 49289 1424034 5.83

— cryptographic instances have compact representation

GauBlian Constraint Propagation

A lineral is called forcing if it is a literal.

GauBian Constraint Propagation

A lineral is called forcing if it is a literal.

GauBian Constraint Propagation

A lineral is called forcing if it is a literal.

decision

GauBian Constraint Propagation

A lineral is called forcing if it is a literal.

decision

GauBian Constraint Propagation

A lineral is called forcing if it is a literal.

decision

GauBian Constraint Propagation

A lineral is called forcing if it is a literal.

decision

GauBian Constraint Propagation

A lineral is called forcing if it is a literal.

decision

GauBian Constraint Propagation

A lineral is called forcing if it is a literal.

decision

GauBian Constraint Propagation

A lineral is called forcing if it is a literal.

decision backtrack
»

GauBian Constraint Propagation

A lineral is called forcing if it is a literal.

decision backtrack
»

Watched Linerals

watching distinct literals from distinct linerals

{ XiteXpeXseXy, X10X28Xs }

Watched Linerals

watching distinct literals from distinct linerals

{ XieXpeX;eXy, X10X28Xs }

Watched Linerals

watching distinct literals from distinct linerals

{ XiteXpeX;eXy, X10X28Xs }

Watched Linerals

watching distinct literals from distinct linerals

{ XteXxexX;exX,, XieX;aX; }

Watched Linerals

watching distinct literals from distinct linerals

{ XieXe@ XX, XieXeXs }
2
{ X1 @ X, }

might miss unit clauses!

Watched Linerals

watch unshared literals from two distinct linerals

L: X38Xs & XidX;

Lz . X] D Xz D X5

Watched Linerals

watch unshared literals from two distinct linerals

L: X38Xs & XidX;

Lz . X] D Xz D X5

Watched Linerals

watch unshared literals from two distinct linerals

L: Xs® Xy d Xid Xy

Lz . X] D Xz D X5

Watched Linerals

watch unshared literals from two distinct linerals

L: XXy @& X58X;

Lz . X] D Xz D X5

Watched Linerals

watch unshared literals from two distinct linerals, change
representation if necessary

L: XXy @& X58X;

LydL: X5 P Xy) Xs

Watched Linerals

watch unshared literals from two distinct linerals, change
representation if necessary

L: XXy @& X58X;
LydL: X P Xy) Xs

— swap shared/unshared parts

Watched Linerals

watch unshared literals from two distinct linerals, change
representation if necessary

L: XXy @& X58X;
LioLly: X3 @ X4 S Xs

— swap shared/unshared parts

— XNF clauses can be efficiently managed by watch-lists

Resolution
Towards CDCL

{X1 y _'X3} {ﬁX1) XZ}
{X2, X5}

Resolution
Towards CDCL

{X1) _'X3} {ﬁX1) XZ} {X1) _'XZ) _'X3} {ﬁX1) XZ}
{X2, =Xz}

Resolution
Towards CDCL

{X1) _'X3} {ﬁX1) XZ} {X1) _'XZ) _'X3} {ﬁX1) XZ}
{X2, =Xz} X1 @ X2, —X5}

Resolution
Towards CDCL

{X1) _'X3} {ﬁX1) XZ} {X1) _'XZ) _'X3} {ﬁX1) XZ}
{X2, =Xz} X1 @ X2, —X5}

s-resolution RN

Ui {LiJUF UL, -L)uG
US{Li® Ly} UFUG

Resolution
Towards CDCL

{X1) _'X3} {ﬁX1) XZ} {X1) _'XZ) _'X3} {ﬁX1) XZ}
{X2, =Xz} X1 @ X2, —X5}

s-resolution RN

Ui {Li}UF Ui {i-LjuG
US{Li® Ly} UFUG

— CDCL in principle possible

Resolution
Towards CDCL

{X1) _'XS} {_'X1) XZ} {X1) _'XZ) _'X3} {_'X1) XZ}
{X2, =Xz} X1 @ X2, —X5}

s-resolution BTN

Ui {LiJUF UL, -L)uG
Uf;:{l—m &L JUFUG

— CDCL — possible

weaken clauses & change representation before resolution
~> expensive linear algebra?

Current State

e GauBian Constraint Propagation

o watched linerals v
o linear algebra ~

Current State

e GauBian Constraint Propagation
o watched linerals v/
o linear algebra ~
— GauB-Jordan with backtracking?
— how to treat equivalent literals?

Current State

e GauBian Constraint Propagation
o watched linerals v/
o linear algebra ~
— GauB-Jordan with backtracking?
— how to treat equivalent literals?

e conflict learning

o theory v’
o implementation ~

Current State

e GauBian Constraint Propagation
o watched linerals v/
o linear algebra ~
— GauB-Jordan with backtracking?
— how to treat equivalent literals?

e conflict learning
o theory v’
o implementation ~
— clause minimization?

Current State

GauBian Constraint Propagation

o watched linerals v/

o linear algebra ~
— GauB-Jordan with backtracking?
— how to treat equivalent literals?

conflict learning

o theory v’
o implementation ~
— clause minimization?

modern decision heuristics

proofs for UNSAT instances x

Current State

GauBian Constraint Propagation

o watched linerals v/

o linear algebra ~
— GauB-Jordan with backtracking?
— how to treat equivalent literals?

conflict learning

o theory v
o implementation ~
— clause minimization?

modern decision heuristics

proofs for UNSAT instances

— DPLL solver in C++ v

Experiments

L]\/---\/Lk — &---Ek

Experiments

L]\/---\/Lk — &---Ek

XNF_to_CNF-XOR

Yie-Li) A -~ AN Yead—L) AN (Y7V---

V Yy)

Experiments

1000
J] / (' —— graph_xnf_solver (XNF)

800 f / fJ / / —— cms5 (CNF-XOR)
O —— PolyBoRi (ANF
2 600 yBoRi (ANF)
g / / / / f —— xnf_solver (XNF)
i —— xnf_bf (XNF
2 400 xnf bf (XNF)
s / / J —— bosphorus (ANF)

200 // —— xnfsat (CNF-XOR)

L iy
0 50 100 150 200 250 300 350 400
instances

Figure: Cactus plots for 400 random satisfiable 2-XNF in n variables and
3n clauses where n € {21,...,40}.

Experiments

1000

/ M —— graph xnf solver (XNF)
cms5 (CNF-XOR)

=)
=}
S

% 600 PolyBoRi (ANF)

g |/ j/ (—— xnf_solver (XNF)

2 400 —— xnfbf (XNF)

© / ‘J % —— bosphorus (ANF)

200 }/
0 " 44: / "
0 50 100 150 200 250 300 350 400
instances
Figure: Cactus plots for 400 random 2-XNF in n variables and

3n clauses where n € {21,...,40}.

Experiments

1000

800 —— graph xnf_solver (XNF)
—— cms5 (CNF-XOR)

600 .
—— PolyBoRi (ANF)

xnf solver (XNF)

400
/ // —— bosphorus (ANF)

200
/

0 50 100 150 200 250 300 350 400
instances

CPU time (s)

Figure: Cactus plots for 400 random satisfiable ANFs in n indeterminates
and 2n quadratic polynomials where n € {21,...,40}.

Experiments

1000

800 —— graph xnf_solver (XNF)
— cms5 (CNF-XOR)

600 .
—— PolyBoRi (ANF)

xnf solver (XNF)

400
/ // —— bosphorus (ANF)

200
/

0 50 100 150 200 250 300 350 400
instances

CPU time (s)

Figure: Cactus plots for 400 random satisfiable ANFs in n indeterminates
and 2n quadratic polynomials where n € {21,...,40}.

Thank you for your attention!

