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Equivalent XNF Clauses

Logic Algebra
X1 @ Xz e X1 +x2+ 1
{Xi® Xz, =X3 8 Xa} {(xi+x2+1, x3+x4}

Ci ~ Gy iff S(Cy) =8(Ca); Ve =(1+C)r,

G~C = VC1 = VCz or 1€ VC1 ﬂVCZ

For i ]

{Liy oy L~ (Lo, Lo Ly, o, L)

Corollary

Cis a tautology < 1€ V¢
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converts Algebraic Normal Form (ANF) to XNF.

ASCON-128‘ format  #vars #cls/polys avg cls len

- ANF 6080 11904 -
anf_to_xnf XNF 12224 17920 1.64
SageMath CNF 26 048 260416 4.79
ApCoCoA CNF-XOR 28545 158 809 3.59
bosphorus CNF 49289 1424034 5.83

— cryptographic instances have compact representation
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Watched Linerals

watch unshared literals from two distinct linerals, change
representation if necessary

L: XXy @& X58X;
LioLly: X3 @ X4 S Xs

— swap shared/unshared parts

— XNF clauses can be efficiently managed by watch-lists
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Resolution
Towards CDCL

{X1 ) _'XS} {_'X1 ) XZ} {X1 ) _'XZ) _'X3} {_'X1 ) XZ}
{X2, =Xz} X1 @ X2, —X5}

s-resolution BTN

Ui {LiJUF UL, -L)uG
Uf;:{l—m &L JUFUG

— CDCL — possible

weaken clauses & change representation before resolution
~> expensive linear algebra?
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Current State

GauBian Constraint Propagation

o watched linerals v/

o linear algebra ~
— GauB-Jordan with backtracking?
— how to treat equivalent literals?

conflict learning

o theory v
o implementation ~
— clause minimization?

modern decision heuristics

proofs for UNSAT instances

— DPLL solver in C++ v
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Thank you for your attention!



