
Towards Satisfactory
Web3 Software Engineering

Jan Gorzny, Ph.D.

14th Pragmatics of SAT International Workshop 2023, Italy

Applying lightweight formal methods and SAT solvers to build better blockchain

applications (position talk)

1

Blockchains & Web 3

Download these slides using this link!
(Google slides)

2

Blockchains

● Append-only distributed ledger

○ Users interact via transactions

● Blocks record which transactions are

included/processed

○ Blocks are determined by some consensus

algorithm (e.g., Proof-of-Work or

Proof-of-Stake)

● Transactions can invoke smart contracts

B0 B1 B2

hash(B0)
TX1
…
TXn
more

B3

B3’

B4

B4’

Smart
Contract

Towards Satisfactory Web3
Software Engineering

3

Towards Satisfactory Web3
Software Engineering

4

dApps & Smart Contracts

● Smart contracts form decentralized applications

(dApps)

○ Only “back-end” is on-chain

● Smart contracts are immutable

○ But some tricks exist

● Computation is metered

● Language is often novel (e.g. Solidity)

Smart Contract Example
// contracts/GLDToken.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
import
"@openzeppelin/contracts/token/ERC20/ER
C20.sol";

contract GLDToken is ERC20 {
constructor(

uint256 initialSupply
) public ERC20("Gold", "GLD") {

_mint(msg.sender,initialSupply);
}

}

Towards Satisfactory Web3
Software Engineering

5

Web3

5

Web 1

1984-2004
Web 2

2004-now?
Web 3

now-future?

Towards Satisfactory Web3
Software Engineering

6

Web3 Failures

6

See also
● Atzei et al. 2016
● Lee et al. 2022

https://eprint.iacr.org/2016/1007.pdf
https://arxiv.org/abs/2210.16209

Towards Satisfactory Web3
Software Engineering

7

Formal Methods & Web3

● Use of theorem provers, bounded model checkers, symbolic execution,

static analysis, and linters to improve code quality was presented at major

conferences (e.g. DevCon 2022, DevCon 2019)

● Applied to platform level concepts like consensus algorithms (e.g., Verma

et al. 2020, Tholoniat and Gramoli 2022) and dApp code (e.g. Park et al.

2018, Bhargavan et al. 2016)

● Still difficult and expensive

○ Decentralized Autonomous Organizations (DAOs) and startups can’t

afford the time and expertise

7

https://www.youtube.com/watch?v=ETlNhV9jYJw&pp=ygUlZm9ybWFsIG1ldGhvZHMgZXRoZXJldW0gZGV2Y29uIGJvZ290YQ%3D%3D
https://www.youtube.com/watch?v=tq5XH3JedqM&pp=ygU4Zm9ybWFsIG1ldGhvZHMgZXRoZXJldW0gc2NpZW5jZSBvZiBibG9ja2NoYWluIGNvbmZlcmVuY2U%3D
https://ieeexplore.ieee.org/abstract/document/9801830/
https://ieeexplore.ieee.org/abstract/document/9801830/
https://link.springer.com/chapter/10.1007/978-3-031-07535-3_12
https://dl.acm.org/doi/abs/10.1145/3236024.3264591
https://dl.acm.org/doi/abs/10.1145/3236024.3264591
https://dl.acm.org/doi/10.1145/2993600.2993611

Towards Satisfactory Web3
Software Engineering

8

Lightweight Formal Methods

8

● To reduce costs, there is a community focus on so-called “lightweight formal

methods” that:

○ sacrifice full verification for usability

○ often only use tools which are powered by state-of-the-art SAT solvers

to find bugs in code

○ often available as push-button tools that focus on the detection of

well-known classes of bugs

● Exploit the limited nature of blockchain execution (recall, metered

execution), which restricts the state space for dApps

● Tools that can often prevent the more egregious errors from being repeated

on blockchains now exist and are being used!

Towards Satisfactory Web3
Software Engineering

9

Position

9

Lightweight formal methods are critical to web3 development.

● The blockchain community has already embraced some lightweight formal

methods

● Lightweight formal methods fit with the ethos of both independent and

institutional Web3 developers

● There are (SAT-based) techniques that are not yet utilized that could have

prevented errors in real blockchain systems

● There are more web3 domains which are fit for the next phase of

lightweight formal methods

Lightweight Formal

Methods

Towards Satisfactory Web3
Software Engineering

11

Lightweight Formal Methods (Jackson, 2012):

“[software] models are developed incrementally, driven by the modelers
perception of which aspects of the software matter most, and of where the
greatest risks lie, and automated tools are exploited to find flaws as early as
possible.”

Does not discourage powerful tooling, but instead emphasizes that its use

be focused on particular areas of concern.

Lightweight Formal Methods

https://mitpress.mit.edu/9780262528900/software-abstractions/

Towards Satisfactory Web3
Software Engineering

12

● Lightweight formal methods may not be sufficient to make claims about the entire system,

but are useful for detecting local bugs and confirming particular behaviors of a system

● These methods may view correctness of the system as the satisfaction of several

properties, some or all of which can be modeled, automatically checked, and used to guide

implementations

○ Can be used to rapidly prototype systems at the specification level, saving

development time

● These techniques trade coverage and total confidence for usability but often do not take as

long to employ.

○ These techniques are also less costly than “full” formal methods

○ Are often more accessible to average developers, reducing the need for expensive

in-house experts or consultants

Lightweight Formal Methods

Towards Satisfactory Web3
Software Engineering

13

Lightweight Formal Methods & Web 3

Blockchain developers have embraced lightweight formal methods in the form of

symbolic execution for dApp source code

● They often pay special attention to unintended reentrancy (a function is
reentrant if it can be re-entered before its initial execution finishes)

Tools (di Angelo et al. 2019 provide a good survey of 27 tools):

● EthBMC (Frank et al. 2020)

● Manticore (Mossberg et al. 2019)

● Oyente (Luu et al. 2016)

● Slither (Feist et al. 2019)

https://ieeexplore.ieee.org/abstract/document/8782988
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://github.com/trailofbits/manticore
https://www.comp.nus.edu.sg/~prateeks/papers/Oyente.pdf
https://ieeexplore.ieee.org/abstract/document/8823898?casa_token=nJUgMHUTChgAAAAA:WAsDiuPRp4mNkO6T4tzdEZc57mYcjSg9c6gQ9YCYZ8tMLnt_ViMRwisCIbIxaqGXgS9htgIg

Towards Satisfactory Web3
Software Engineering

14

SAT & Web3

● Under the hood, these tools employ SAT solvers

like Z3 and CVC5 to find bugs

● These approaches are powerful and general

○ Metering of execution and storage helps!

● Fall short of showing program correctness

Towards Satisfactory Web3
Software Engineering

15

SAT: Fit for Web3

● These tools are a perfect fit for blockchain developers

○ These tools are valuable: symbolic execution can catch more bugs than

testing alone

○ These tools are simple: they do not require a substantial investment

from the development team. Easily accessible by DAOs, start-ups, and

institutions

● These tools are integrated and developed at hackathons, improving their

capabilities and accessibility

○ These decentralized improvements to these tools are necessary to keep

up with the growing complexity of dApps and Solidity itself

Building More Secure Systems

through Lightweight Formal Methods

with SAT solvers

Towards Satisfactory Web3
Software Engineering

17

17

● Push-button analyzers are not silver bullet solutions to improve dApp code

quality. dApp developers also rely on

○ Tests that help ensure that at least individual functions and “happy path”

scenarios work as intended

○ Code audits (which include manual code review); seen as a prerequisite to

deployment (due to immutability)

● Audits are the last line of defense against incorrect code

○ Typically, audits are solicited only near the end of the project’s

development

Can Web3 developers do better?

The Future of SAT in Web3

Towards Satisfactory Web3
Software Engineering

18

Can web3 developers do better?

In some cases, Yes!

● 15-line Ethereum token? ❌
● Cross-chain protocols (a.k.a. “bridges”), side-chains, rollups, and DeFi? ✅

Check correctness at the specification level

● Feature interactions study; SAT solvers can find these (e.g. Tsuchiya et al

2002)

● Software product lines and software synthesis (e.g. Xiang et al. 2018)

Specification-level lightweight formal methods can also overcome scaling

issues of applying SAT solvers directly to code

● These artifacts can guide test cases and be shared with code auditors

The Future of SAT in Web3

https://dl.acm.org/doi/10.5555/826039.826957
https://dl.acm.org/doi/10.5555/826039.826957
https://dl.acm.org/doi/10.1145/3176644

Towards Satisfactory Web3
Software Engineering

19

Can web3 developers do better?

In some cases, yes!

SAT based automated test generation (e.g. Yan and Zhang 2006)

● Testing is generally used well in Web3, but not always!

● Integration into various development frameworks possible

The Future of SAT in Web3

https://lcs.ios.ac.cn/~yanjun/papers/SAT_Based_Automated_Test_Case_Generation_For_MUMCUT_Coverage.pdf

Towards Satisfactory Web3
Software Engineering

20

Can SAT do better in Web3?

SAT by far is most used in verification of code on contracts as part of those tools

mentioned earlier.

Performance may be improved by answering some of these questions:

● How do you model the system correctly? Can it be improved?

● How can bitwise operations be handled?

● How can formulas be modelled?

● How can bytecode be parsed & represented?

● Which bugs can be found? How many transactions can be modelled?

The Future of SAT in Web3

Towards Satisfactory Web3
Software Engineering

21

● Where can SAT solvers be applied as part of other tools?

● Can you add SAT to dynamic analysis? Is that a meaningful question?

● Can you apply SAT to the cryptographic functions which are typically only

modelled as a black-box?

● How can we explore larger state spaces efficiently? What is too large?

● What domain-specific benchmarks exist? Are they updated?

● On what ecosystems do we have tooling?

and the list goes on…

The Future of SAT in Web3

Towards Satisfactory Web3
Software Engineering

22

Zero-knowledge proofs (in Web3)

● Translate functions to system of equations over a finite field that are satisfiable

iff the function is computed correctly

Massive amount of polynomials that cannot be verified by hand (2^19 degree

polynomials, and about that many constraints).

We can use SAT (SMT) to analyse these systems for some properties (e.g., unique

satisfiability).

Requires new theories: finite field solver for SMT (e.g. Ozdemir et al. 2023)

● Other ways to do this? Other implementations, or other solvers?

● Symmetry breaking? Domain specific tricks?

The Future of SAT in Web3

https://eprint.iacr.org/2023/091

Towards Satisfactory Web3
Software Engineering

22

Requires new theories: finite field solver for SMT (e.g. Ozdemir et al. 2023)

● Also more clever encodings than these?

SAT/SMT & ZK

https://eprint.iacr.org/2023/091

Towards Satisfactory Web3
Software Engineering

23

Conclusion

● The blockchain community has already embraced lots of SAT tools!

● Lightweight formal methods are accessible

● SAT should be applied to more areas of software engineering

● Technical challenges are also present for these tools themselves

Thank you for listening!

@quantstamp

@jgorzny

Download these slides using this link!
(Google slides)

See my SMT 2023 talk in Rome for
analyzing Halo2 circuits tomorrow!

@jgorzny

jan@quantstamp.com

