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Introduction



Boolean Satisfiability Problem (SAT)

○ Boolean Formula given in Conjunctive Normal Form:

○ Disjunctions                are called clauses

○ Clauses consist of literals
for variables

○ Variables can be assigned 



SAT Solving

○ to solve a satisfiable problem (SAT):
– Assign variables with each clause having a true literal
– NP-hard

○ to solve an unsatisfiable problem (UNSAT):
– proof that no such assignment exists



State-of-the-Art SAT Solving

○ Modern SAT Solvers use 
Conflict Driven Clause Learning (CDCL)

○ Basic Idea:
– Choose a partial assignment of the variables
– For all clauses check for conflicts and implications
– Analyse conflicts and learn conflict clauses



Search for Conflicts & Implications

○ Accomplished by (Unit) Propagation

○ basic Idea:
– all literals in a clause assigned false ==> Conflict
– all but one literal assigned false and remaining literal 

unassigned                              ==> (Unit) Implication



Unit Propagation

○ traditional approaches for fast unit propagation:
– deleting clauses (inevitable)
– avoiding clause look-ups

● special data structures
– e.g. Two Watched Literals (TWL) scheme



Priority Propagation (PriPro)

○ Our contribution: 
adding prioritisation to unit propagation



Priority Propagation (PriPro)

○ Our contribution: 
adding prioritisation to unit propagation

○ Our Solver CaDiCaL_PriPro:
Special Innovation Award at SAT Comp. 2021
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Priority Propagation (PriPro)

○ Our contribution: 
adding prioritisation to unit propagation

○ basic idea:
– select clauses to prioritise
– only propagate prioritised clauses
– if no conflict occurred, propagate other clauses, too

○ implementation:
– additional TWL scheme for prioritised clauses
– adapt unit propagation to focus on prioritised clauses



Priority Propagation (PriPro)



Two Watched Literals



Two Watched Literals

○ basic idea:
– only look clauses up if one of their watched literals is false
– only those clauses can lead to conflict or implication



Trail

○ trail indicates which literals have been assigned true
○ contains literals in order of assignment
○ (negations of) literals on the trail need to be ‘propagated’
○ iterate through trail to propagate literals
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Prioritised TWL scheme
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Unit Propagation with PriPro

of all remaining literals



Propagation of Prioritised Watches

○ resembles original unit propagation



Propagation of Prioritised Watches

○ resembles original unit propagation

○ distinguish between
– current literal w.r.t. regular watches

● indicated by propagated
– current literal w.r.t. prioritised watches

● indicated by pripro_propagated



Propagation of Prioritised Watches

○ resembles original unit propagation
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Relation between Current Literals

○ resembles original unit propagation
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Relation between Current Literals

○ current literal ≈ next to be propagated
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Relation between Current Literals
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Summary: Priority Propagation

○ considers the same clauses for propagation as before
○ propagation order differs

– propagate all prioritised watches until end of trail
– propagate regular watches of next literal on the trail
– repeat until conflict or end of trail is reached



Heuristics for
Prioritisation



Dynamic Prioritisation

○ choose/adjust prioritised clauses at runtime

○ to prioritise a clause (upgrading):
– move both watches:

from regular to prioritised TWL scheme

○ to de-prioritise a clause (downgrading):
– move both watches:

from prioritised to regular TWL scheme



Simple Heuristics 

○ parametrised upgrade heuristic
– based on recent resolvents
– upgrade on-the-fly

○ parametrised downgrade heuristics
– always downgrading all clauses at once
– triggered by events + at constant interval

○ other heuristics possible!



Upgrade Heuristic

○ upgrade during conflict analysis:

– clauses appearing in conflict analysis (resolvents)
● only if size/LBD smaller than some threshold
● default: LBD ≤ 6
● (conflicting clause is never upgraded)

– newly learned clauses (conflict clauses):
● regardless of size/LBD



Downgrade Heuristic

○ sporadically downgrade all clauses at once
– forced downgrades triggered by

● any inprocessing techniques (easy combination)
● clause database reductions (i.e. clause deletions)
● rephasing
● optionally at restarting 

– scheduled downgrades:
● at constant interval (default: 10.000 conflicts)
● interval is measured in conflicts
● regardless of whether forced downgrades occurred



Experimental Results



Experiments

○ tested on SAT Competition 2021 instances (400 problems)
○ baseline solver: CaDiCaL v 1.4.0

○ varying upgrade heuristics with
– LBD limit: 0, 1, …,   8, no limit
– size limit:       2, 4, …, 12, no limit 

○ downgrade heuristic
– scheduled downgrade interval: 

2, 5, 10, 25, …,  1.000.000, only forced downgrades
– optionally: downgrades at restarts



Good Results!

○ Improves performance on both, SAT and UNSAT
– mostly independent of parameters chosen
– overall speed-up of about 10% (nPar2-score)
– solved 5 to 15 instances more



Speed-up on UNSAT



Shorter Conflict Clauses Learned

○ reduction of average size of learned clauses 
○ before learned clause minimisation:

– about  7 %  on SAT
– about 11 %  on UNSAT 

○ after learned clause minimisation:
– about  6 % on SAT  
– about 21 % on UNSAT

○ mostly independent of parameters chosen
○ confirms hypothesis by Jingchao Chen [1]

[1] Jingchao Chen, Core First Unit Propagation, arXiv preprint: 1907.01192 (2019)



Conclusion



Summary: Priority Propagation

○ reordering clause look-ups during Propagation
○ improves performance on both, SAT and UNSAT
○ reliable speed-up on UNSAT
○ smaller clauses learned from conflict analysis
○ already simple heuristics lead to good results

– mostly independent of parameters chosen
○ easy to implement in modern SAT solvers

 



Summary: Priority Propagation

○ reorder clauses for propagation
○ improves performance on both, SAT and UNSAT
○ reliable speed-up on UNSAT
○ smaller clauses learned from conflict analysis
○ already simple heuristics lead to good results

– mostly independent of parameters chosen
○ easy to implement in modern SAT solvers

Thank you for your attention.
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