
Benjamin Kaiser
Robert Clausecker
Michael Mavroskoufis

Prioritised Unit Propagation
by Partitioning the Watch Lists

Pragmatics of SAT
Workshop 2023

04.07.2023

1) Introduction
2) Priority Propagation
3) Heuristics for Prioritisation
4) Experimental Results
5) Conclusion

Introduction

Boolean Satisfiability Problem (SAT)

○ Boolean Formula given in Conjunctive Normal Form:

○ Disjunctions are called clauses

○ Clauses consist of literals
for variables

○ Variables can be assigned

SAT Solving

○ to solve a satisfiable problem (SAT):
– Assign variables with each clause having a true literal
– NP-hard

○ to solve an unsatisfiable problem (UNSAT):
– proof that no such assignment exists

State-of-the-Art SAT Solving

○ Modern SAT Solvers use
Conflict Driven Clause Learning (CDCL)

○ Basic Idea:
– Choose a partial assignment of the variables
– For all clauses check for conflicts and implications
– Analyse conflicts and learn conflict clauses

Search for Conflicts & Implications

○ Accomplished by (Unit) Propagation

○ basic Idea:
– all literals in a clause assigned false ==> Conflict
– all but one literal assigned false and remaining literal

unassigned ==> (Unit) Implication

Unit Propagation

○ traditional approaches for fast unit propagation:
– deleting clauses (inevitable)
– avoiding clause look-ups

● special data structures
– e.g. Two Watched Literals (TWL) scheme

Priority Propagation (PriPro)

○ Our contribution:
adding prioritisation to unit propagation

Priority Propagation (PriPro)

○ Our contribution:
adding prioritisation to unit propagation

○ Our Solver CaDiCaL_PriPro:
Special Innovation Award at SAT Comp. 2021

Priority Propagation (PriPro)

○ Our contribution:
adding prioritisation to unit propagation

○ basic idea:
– select clauses to prioritise
– only propagate prioritised clauses
– if no conflict occurred, propagate other clauses, too

Priority Propagation (PriPro)

○ Our contribution:
adding prioritisation to unit propagation

○ basic idea:
– select clauses to prioritise
– only propagate prioritised clauses
– if no conflict occurred, propagate other clauses, too

○ implementation:
– additional TWL scheme for prioritised clauses
– adapt unit propagation to focus on prioritised clauses

Priority Propagation (PriPro)

Two Watched Literals

Two Watched Literals

○ basic idea:
– only look clauses up if one of their watched literals is false
– only those clauses can lead to conflict or implication

Trail

○ trail indicates which literals have been assigned true
○ contains literals in order of assignment
○ (negations of) literals on the trail need to be ‘propagated’
○ iterate through trail to propagate literals

Propagation of Literals

Propagation of Literals

Propagation of Literals

Prioritised TWL scheme

Prioritised TWL scheme

Unit Propagation with PriPro

Unit Propagation with PriPro

Unit Propagation with PriPro

Unit Propagation with PriPro

Unit Propagation with PriPro

of all remaining literals

Propagation of Prioritised Watches

○ resembles original unit propagation

Propagation of Prioritised Watches

○ resembles original unit propagation

○ distinguish between
– current literal w.r.t. regular watches

● indicated by propagated
– current literal w.r.t. prioritised watches

● indicated by pripro_propagated

Propagation of Prioritised Watches

○ resembles original unit propagation

Relation between Current Literals

Relation between Current Literals

○ resembles original unit propagation

Relation between Current Literals

Relation between Current Literals

○ current literal ≈ next to be propagated

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Relation between Current Literals

Summary: Priority Propagation

Summary: Priority Propagation

○ considers the same clauses for propagation as before
○ propagation order differs

Summary: Priority Propagation

○ considers the same clauses for propagation as before
○ propagation order differs

– propagate all prioritised watches until end of trail
– propagate regular watches of next literal on the trail
– repeat until conflict or end of trail is reached

Heuristics for
Prioritisation

Dynamic Prioritisation

○ choose/adjust prioritised clauses at runtime

○ to prioritise a clause (upgrading):
– move both watches:

from regular to prioritised TWL scheme

○ to de-prioritise a clause (downgrading):
– move both watches:

from prioritised to regular TWL scheme

Simple Heuristics

○ parametrised upgrade heuristic
– based on recent resolvents
– upgrade on-the-fly

○ parametrised downgrade heuristics
– always downgrading all clauses at once
– triggered by events + at constant interval

○ other heuristics possible!

Upgrade Heuristic

○ upgrade during conflict analysis:

– clauses appearing in conflict analysis (resolvents)
● only if size/LBD smaller than some threshold
● default: LBD ≤ 6
● (conflicting clause is never upgraded)

– newly learned clauses (conflict clauses):
● regardless of size/LBD

Downgrade Heuristic

○ sporadically downgrade all clauses at once
– forced downgrades triggered by

● any inprocessing techniques (easy combination)
● clause database reductions (i.e. clause deletions)
● rephasing
● optionally at restarting

– scheduled downgrades:
● at constant interval (default: 10.000 conflicts)
● interval is measured in conflicts
● regardless of whether forced downgrades occurred

Experimental Results

Experiments

○ tested on SAT Competition 2021 instances (400 problems)
○ baseline solver: CaDiCaL v 1.4.0

○ varying upgrade heuristics with
– LBD limit: 0, 1, …, 8, no limit
– size limit: 2, 4, …, 12, no limit

○ downgrade heuristic
– scheduled downgrade interval:

2, 5, 10, 25, …, 1.000.000, only forced downgrades
– optionally: downgrades at restarts

Good Results!

○ Improves performance on both, SAT and UNSAT
– mostly independent of parameters chosen
– overall speed-up of about 10% (nPar2-score)
– solved 5 to 15 instances more

Speed-up on UNSAT

Shorter Conflict Clauses Learned

○ reduction of average size of learned clauses
○ before learned clause minimisation:

– about 7 % on SAT
– about 11 % on UNSAT

○ after learned clause minimisation:
– about 6 % on SAT
– about 21 % on UNSAT

○ mostly independent of parameters chosen
○ confirms hypothesis by Jingchao Chen [1]

[1] Jingchao Chen, Core First Unit Propagation, arXiv preprint: 1907.01192 (2019)

Conclusion

Summary: Priority Propagation

○ reordering clause look-ups during Propagation
○ improves performance on both, SAT and UNSAT
○ reliable speed-up on UNSAT
○ smaller clauses learned from conflict analysis
○ already simple heuristics lead to good results

– mostly independent of parameters chosen
○ easy to implement in modern SAT solvers

Summary: Priority Propagation

○ reorder clauses for propagation
○ improves performance on both, SAT and UNSAT
○ reliable speed-up on UNSAT
○ smaller clauses learned from conflict analysis
○ already simple heuristics lead to good results

– mostly independent of parameters chosen
○ easy to implement in modern SAT solvers

Thank you for your attention.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

