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Mixed-Integer Program (MIP)

A MIP is a problem of the form:

min
x∈Rn

cT x

s.t. Ax ≥ b

l ≤ x ≤ u

x ∈ ZI × RC .

(1)

A ∈ Rm×n, b ∈ Rm, l , u ∈ Rn

I 0-1 Integer Program (IP):

I = [n], li = 0, ui = 1∀i ∈ I

I Mixed 0-1 IP:
I ⊂ [n], li = 0, ui = 1∀i ∈ I

I Linear Programming (LP) Relaxation of (1):

ZI  RI
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Motivation

I Current conflict analysis in MIP:

- as in CDCL SAT solvers (e.g., [Marques-Silva and Sakallah, 1996])
- operates on clauses extracted from the linear constraints

I Pseudo-Boolean (PB) solvers [Chai and Kuehlmann, 2005]

- extend conflict analysis to operate directly on linear constraints.

Can MIP benefit from PB conflict analysis?
This talk:

I Integration of PB conflict analysis for 0–1 integer programs into MIP

I Extend the algorithm by using cuts from the MIP literature

I Implement the algorithm in the MIP solver SCIP
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Conflict Analysis in MIP

Goal: When branch-and-bound reaches
an infeasible subproblem, analyze the
infeasibility to

I extract a shorter explanation

I that prunes other parts of the tree

I also in backtracking

Reasons for infeasibility:

I Propagation

I LP relaxation

I Bound exceeding LP
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Conflict Graph Analysis [Achterberg, 2007]

Similar to [Marques-Silva and Sakallah, 1996]

I The sequence of assignments and implications is captured by a directed
implication graph

I Each cut that separates the decision nodes from λ yields a conflict (FUIP, . . . )

x1 x̄2 x3 x4 x̄5

x6 x̄7 x8 x9 x10 x11

x̄12 x13 x14 x̄15

x16 x17 x18

λ

decisions

implied bounds

infeasibility
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λ

decisions

implied bounds

infeasibility
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x16 x17 x18

λ

decisions

implied bounds

infeasibility

Variable assignment {x13, x14, x16} responsible for the conflict
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Conflict Graph Analysis [Achterberg, 2007]

Similar to [Marques-Silva and Sakallah, 1996]

I The sequence of assignments and implications is captured by a directed
implication graph

I Each cut that separates the decision nodes from λ yields a conflict (FUIP, . . . )

x1 x̄2 x3 x4 x̄5

x6 x̄7 x8 x9 x10 x11

x̄12 x13 x14 x̄15

x16 x17 x18

λ

decisions

implied bounds

infeasibility

Learned clause: x13 ∨ x14 ∨ x16

 (1− x13) + (1− x14) + (1− x16) ≥ 1
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Conflict Graph Analysis in MIP [Achterberg, 2007]

I Technical issues: non-binary variables

- Conflict graph: bound changes instead of variable assignments
- Conflict clause → conflict constraint (bound disjunction)

e.g., conflict constraint (x1 ≥ 1) ∨ (x3 ≤ 0) ∨ (x7 ≤ 11)

I What if the reason for infeasibility is the LP relaxation?

- Find “smaller” subset of bound changes that leads to the infeasible LP
- Start conflict graph analysis
- (Alternative: use LP duality theory [Witzig et al., 2019])
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Preliminaries I

I A pseudo-Boolean constraint is a 0–1 integer linear inequality∑
i∈N

ai`i ≥ b,

ai ∈ Z≥0 for all i ∈ N , b ∈ Z≥0

I `i denote literals, which can be either xi or its negation x i = 1− xi .

I A partial assignment ρ, map from literals to 0 (falsified) or 1 (true)

I The slack of a PB constraint under a partial assignment ρ: is defined as

slack(C , ρ) :=
∑

{i∈N :ρ(i)6=0}

ai − b.

If the slack is negative =⇒ conflict

I Generalized resolution rule: [Hooker, 1988]
 linear combination of two constraints that cancels a variable
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Example Generalized Resolution
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Creason : x1 + x2 + 2x3 ≥ 2

Cconfl : x1 + 2x3 + x4 + x5 ≥ 3

ρ =
{
x1

dec.
= 0, x3

Creason= 1
}
⇒ Conflict with Cconfl



Example Generalized Resolution

Resolving on x3:

resolve {x3}
x1 + x2 + 2x3 ≥ 2 x1 + 2x3 + x4 + x5 ≥ 3

2x1 + x2 + x4 + x5 ≥ 3

Does not explain infeasibility since it has non-negative slack

I Issue: the reason does not propagate tightly over the reals

I Can we make the reason constraint propagate tightly?
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Techniques used to reduce the slack of the reason

I Weakening non falsified literals `j :

weaken(
∑
i∈N

ai`i ≥ b, `j) =
∑

i 6=j∈N

ai`i ≥ b − aj

I Cut Rules:

- Saturation (Coef. Tightening):

saturate(
∑
i∈N

ai`i ≥ b) =
∑
i∈N

min{ai , b}`i ≥ b

- Division (Chvatal-Gomory) by d > 0:

divide(
∑
i∈N

ai`i ≥ b, d) =
∑
i∈N

⌈ai
d

⌉
`i ≥

⌈
b

d

⌉
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ρ =
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x1

dec.
= 0, x3
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Example Generalized Resolution

Weaken non-falsified variables in Creason other than x3:

weaken {x2}
x1 + x2 + 2x3 ≥ 2

x1 + 2x3 ≥ 1

saturate
x1 + 2x3 ≥ 1

x1 + x3 ≥ 1

resolve {x3}
x1 + x3 ≥ 1 x1 + 2x3 + x4 + x5 ≥ 3

3x1 + x4 + x5 ≥ 3

I Now the slack is negative  conflict invariant is preserved
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Conflict Analysis Algorithm

I First introduced in [Chai and Kuehlmann, 2005]

Algorithm: Generalized Resolution Conflict Analysis

Input : conflict constraint Cconfl, falsifying partial assignment ρ
Output : learned conflict constraint Clearn

1 Clearn ← Cconfl

2 while Clearn not asserting and Clearn 6=⊥ do
3 `r ← literal last assigned on ρ

4 if `r propagated and ¯̀
r occurs in Clearn then

5 Creason ← reason(`r , ρ)
6 Creason ← reduce(Creason,Clearn, `r , ρ)
7 Clearn ← resolve(Clearn,Creason, `r )

8 ρ← ρ \ {`r}
9 return Clearn

I Sat4j [Le Berre and Parrain, 2010]

I RoundingSAT [Elffers and Nordström, 2018]
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Reduction Algorithm

I Goal: Make the reason constraint propagate tightly
 Linear combination with Cconfl remains infeasible (our invariant holds)

Algorithm: Saturation-based Reduction Algorithm

Input : conflict constraint Cconfl, reason constraint Creason,
literal to resolve `r , partial assignment ρ

Output : reduced reason Creason

1 while slack((resolve(Creason,Cconfl, `r )), ρ) ≥ 0 do
2 `j ← non falsified literal in Creason\{`r}
3 Creason ← weaken(Creason, `j)
4 Creason ← saturate(Creason)

5 return Creason

I Division (CG) can be used instead of saturation [Elffers and Nordström, 2018]

I Incomparable in terms of strength [Gocht et al., 2019]
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Mixed Integer Rounding (MIR)

Introduced in [Marchand and Wolsey, 2001]

Elementary mixed integer set:

X := { (x , y) ∈ Z× R :
x ≤ b + y (I )
y ≥ 0 (II ) }

y

x

b

X

conv(X )

(1)

(2)

(3)

(4)

MIR

Inequalities (I ) and (II ) do not suffice to describe conv(X ).
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Mixed Integer Rounding (MIR)

Disjunctive argument:

I If an inequality
is valid for X 1 and for X 2

it is also valid for X 1 ∪ X 2.

Here:

I X 1: Add x ≥ dbe (III )

I X 2: Add x ≤ bbc (IV )

y

x

b

X

conv(X )

(1)

(2)

(3)
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Mixed Integer Rounding (MIR)

Inequality valid for X 1 and for X 2:

x ≤ bbc+ 1
1−fb y︸ ︷︷ ︸

(I )+fb(III ) and (II )+(1−fb)(IV )

y

x

b

Xconv(X )

(1)

(2)

(3)

(4)

MIR

Inequalities (I ) and (II ) do not suffice to describe conv(X ).
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Mixed Integer Rounding (MIR)

Inequality valid for X 1 ∪ X 2 = X :

x ≤ bbc+ 1
1−fb y︸ ︷︷ ︸

MIR inequality

y

x

b

X

conv(X )

(1)
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Normalized MIR Cut

Let C :
∑

i∈N ai`i ≥ b. The Mixed Integer Rounding (MIR) Cut of C with
divisor d ∈ Z>0 is given by the constraint∑

i∈I1

⌈ai
d

⌉
`i +

∑
i∈I2

(⌊ai
d

⌋
+

f (ai/d)

f (b/d)

)
`i ≥

⌈
b

d

⌉
, (1)

where
I1 = {i ∈ N : f (ai/d) ≥ f (b/d) or f (ai/d) ∈ Z},

I2 = {i ′ ∈ N : f (ai ′/d) < f (b/d) and f (ai ′/d) /∈ Z},

and f (·) = · − b·c. To obtain a normalized version of the MIR cut, we multiply
both sides of the constraint by (b mod d).
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MIR Reduction

For a partial assignment ρ and Creason :
∑

i∈N ai`i ≥ b propagating a literal `r to 1:

1. weakening all non-falsified literal not divisible by ar , and

2. Applying MIR on Creason with divisor d = ar
 slack 0.

Remarks:

I MIR-based reduction implies Division-based reduction, e.g.,

Let ρ = {x1 = 0, x2 = 0, x3 = 1} and Creason : 2x1 + 6x2 + 10x3 ≥ 8:

1. Division-based reduction (divide by 10 and apply ceiling):
 x1 + x2 + x3 ≥ 1

2. MIR-based reduction:
 0.2

0.8
x1 + 0.6

0.8
x2 + x3 ≥ 1

I MIR/Division-based reduction is incomparable to Saturation-based reduction
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Experimental Setup

Some implementation details:

I PB conflict analysis can be generalized for constraints with real coefficients.
However, foating-point arithmetic may cause numerical issues.
To mitigate the risks:

I Stop if the coefficients of the constraints span too many orders of magnitude

I Remove variables with too small coefficients

Setup:

I Implemented all techniques in the open source MIP solver SCIP.

I Performance variability is a key concern in MIP literature.
 use a large and diverse test set of instances and multiple seeds.

I 195 pure 0-1 models from the MIPLIB2017 collection × 5 seeds.
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Computational Results

Settings solved time(s) # nodes time quot nodes quot

all(975) Graph 405 603.55 682.31 1.0 1.0
Division 419 601.4 683.48 1.0 1.0
MIR 420 599.37 677.04 0.99 0.99
Saturation 418 599.76 691.81 0.99 1.01

affected(286) Graph 263 121.21 753.96 1.0 1.0
Division 277 117.82 682.43 0.97 0.91
MIR 278 116.91 675.11 0.96 0.90
Saturation 276 116.71 710.72 0.96 0.94

affected and Graph 254 81.47 507.23 1.0 1.0
all-optimal(254) Division 254 82.87 482.61 1.02 0.95

MIR 254 81.43 468.57 1.0 0.92
Saturation 254 80.21 485.52 0.98 0.96

I “MIR” leads always to smaller search trees

I “MIR” vs “No Conflict Analysis” on 279 affected instances:
+25 solved, 27% faster, 37% smaller trees

I Still requires further investigation: weakening, choose best cut, . . .
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Conclusion

In this work:

I We studied the integration of PB conflict analysis into a MIP solving
framework.

I We strengthened the PB conflict analysis further by using MIR cuts.

Next Steps:

I Dynamically choose the best strengthening method?
I Post-Process the final learned constraint

- remove irrelevant variables
e.g., 3x1 + x4 + x5 ≥ 3 can be strengthened to x1 ≥ 1

I Complement variables (e.g., replacing xi by 1− x̄i ) before CG/MIR

I Generalize to 0–1 mixed IPs

Thank you for your attention!

Questions?
mexi@zib.de
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