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Abstract
In this study we continue the success story of fuzz testing automated reasoning tools by providing the

first extensive fuzzing study on MaxSAT solvers. As somewhat expected we identify interesting defects

and failures in almost all MaxSAT solvers from the MaxSAT Evaluation 2022. A classification of these

bugs into four main classes and various subclasses can help developers in debugging them. Finally,

we show how to uncover additional issues by a new MaxSAT specific delta debugging strategy on top

of reducing the failing test cases significantly. This study clearly shows that MaxSAT solvers are less

reliable and robust than expected, and further suggests that fuzzing and delta debugging can help to

improve this situation. Furthermore, we provide a regression suite of interesting small instances.
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1. Introduction

Reliable maximum satisfiability (MaxSAT) solving is of great interest due to wide-ranging

applications such as hardware and software verification, constraint programming, and AI

planning [1, 2, 3, 4, 5, 6, 7]. It is crucial to develop efficient and robust MaxSAT solvers to address

ever-growing complexity and reliability in these domains. The continuous improvement of

MaxSAT algorithms which can be seen at the yearly MaxSAT evaluation (MSE) [8], allows for

increasingly complex problems to be solved.

MaxSAT and its variations are optimization variants of SAT solving, seeking a truth assign-

ment to a Boolean formula in Conjunctive Normal Form (CNF) such that the number of satisfied

clauses is maximized [9, 10]. In the weighted variant, a weight is assigned to each clause, where

the goal is, to maximize the accumulated weight of the satisfied clauses.

There are different ways of achieving a reliable MaxSAT solver. One method is programming

the whole MaxSAT solver in a verified programming language, as it is already done in SAT with

IsaSAT [11]. This has the drawback that all applied techniques have to be proven, which is not

easily achieved, and therefore the solver is generally slower on complex problems. Another way

is adding proofs to the solutions [12, 13] verifiable by a proof checker. Unfortunately, proofs are
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Table 1
This overview shows the used techniques in the fuzzed solvers and their rank (sometimes two solver

variants) in the MSE 22’ (Pacose MSE 21’). We combined the MaxSAT preprocessor maxpre2 with

EvalMaxSAT, the most reliable solver according to our results. Most of the solvers using multiple

solving techniques as: Branch and Bound (BB); Pseudo Boolean Constraints (PB); Hitting Set (HS);

Unsat-based (UB); Sat-Unsat-based (SUB); Satisfiability Modulo Theories (SMT) and recently Integer

Linear Programming (ILP) is becoming popular to solve instances (Top 4 solver of 2022 using ILP).

Rank MaxSAT Solver HS UB SUB PB BB ILP SMT Others

1. & 2. CASHWMaxSAT [19, 20] X X

3. & 7. UWrMaxSat [21] X X

4. MaxHS [22] X X X X

5. & 6. WMaxCDCL [23, 24] X

8. EvalMaxSAT [25] X

9. CGSS [26] X

10. Exact [27] X X

6. Pacose [28] X X

z3rc2 [29, 30] X X X

z3maxres [29, 30] X X X

z3wmax [29, 30] X X X

maxpre 2.0 [31, 32] 2.0 X

not yet available for the weighted variant. In our study we chose a third technique, a dynamic

software testing approach, requiring no changes in the code of solvers. This approach, called

fuzz testing or fuzzing, is applied to enhance the robustness of solvers.

Fuzz testing has been successful in detecting software vulnerabilities and bugs across various

fields [14]. The first paper in 1990 shows the efficiency of identifying reliability issues in

UNIX utilities [15]. In MaxSAT related fields such as Satisfiability Modulo Theories (SMT) [16],

SAT, Quantified Boolean Formulas (QBF) [17], and And-Inverter Graph Verification [18] fuzz

testing has demonstrated its effectiveness. This study presents the first extensive study in

fuzzing MaxSAT solvers. As expected, we found numerous failures in almost all the 15 fuzzed

MaxSAT algorithms and solvers as detailed in Section 3. We then classified these bugs into 4

main and 14 subcategories, as outlined in Section 2.4. Additionally, we employ our novel delta

debugger to shrink the formulas, simplifying the instances, as described in Section 2.3. During

the delta debugging phase many additional faults were triggered, due to the reduction process

as described in Section 3.

In Table 1 we describe the tested solvers, their ranking in the MSE and also point out the

techniques they use.

Regarding related work, we are only aware of two available MaxSAT fuzzers supporting the

old pre MSE22 WCNF format. The first fuzzer [33] tests only for invalid exit codes of the solver

and a missing o-value or one which is bigger than sum of weights. The second fuzzer [34]

comes along with a MaxSAT solver GaussMaxHS [35], which has not yet participated in the

MSE. The authors generated a CNF, added xor gates and converted it with bit blasting into

WCNF with a bundle of python and shell scripts. Our understanding is that both fuzzers do not

check whether the o-value matches the model or an optimum is reached.



2. Methodology

In this section we introduce the four key components of our study: We begin by discussing the

techniques to construct random WCNF formulas by our fuzzer WCNFuzz. Next, we describe our

WCNFCompare tool, developed to compare and log the faults of solvers, providing a valuable

direct comparison of their results. Following that, we discuss our implementation WCNFddmin
of the delta debugging algorithm and explain its unique features. Finally, we present our fault

classification scheme, which categorizes the discovered faults from WCNFCompare.

2.1. Fuzz testing

Fuzzing is a technique to detect software vulnerabilities with the idea to treat software as a

black box and generate random inputs in order to uncover critical defects as segmentation faults,

overflows or incorrect results [14]. Our novel tool WCNFuzz is a generation-based grammar-

aware [36] fuzzer. It generates random WCNF instances, following the input language rules, to

identify crashes, performance bottlenecks, invalid solver outputs and hard to solve instances.

This allows developers to understand weaknesses and strengths of their solvers to improve the

reliability and efficiency of their software [14].

There already exist successful fuzzing tools for CNF formulas like CNFuzz and FuzzSAT [17].

CNFuzz generates structured instances, which results in problems closer to industrial examples,

than simply applying a variable clause ratio [37, 38, 39], as done in many studies to generate

hard random 3-SAT formulas. Our goal is to construct difficult problems with only a few

clauses, because it is shown in previous studies [17, 14], that with such instances most faults

are triggered. WCNFuzz modifies CNFuzz to generate such WCNF formulas.

In the following we use our implementation of a “Linear Congruential Generator", with values

from the “Art of Computer Programming" [40], to pick all random choices. WCNFuzz adds up

to 10 layers of clauses with each containing up to 70 variables. Layers consist entirely either

of hard or soft clauses. Soft clause layers are chosen randomly with higher chance initially

and lower chance for the following soft layers. The clauses of the n’th layer contains variables

of its own layer with high probability and with decreasing chances variables of lower layers.

Most of the clauses (around 2/3) are ternary, with decreasing chances they are of higher order

and around every tenth clause is binary. We calculate the number of clauses in each layer by

picking a suitable clause-variable-ratio. As we want hard clauses to be satisfiable with a high

chance, we pick a low ratio 𝑟 ∈ [1, 2.5] for hard clause layers. For soft clause layers we want to

have at least some clauses making the problem unsatisfiable, therefore we choose a high ratio

𝑟 ∈ [3.5, 5.5].
Additionally, we add Tseitin encoded Equality, AND, 3-XOR and 4-XOR gates. We include an

activation literal to all clauses of 3/4 of the gate encodings and add one additional soft clause

containing only the negated activation literal. Furthermore, one out of ten instances is forced

to contain only soft clauses. In very rare cases, all layers and gates are decided to consist only

of hard clauses.

The maximal weight in the MSE is often relatively small, and often there are unweighted

problems to solve. Therefore, the maximal weight is chosen to be in one of the following ranges,

for each interval the probability is 1/5: [1, 1]; [2, 32]; [33, 256]; [257, 65535]; with a probability



of 4/25 it is in the range of [65536, 232]; and with the probability 1/25 it is in the range of

[232 + 1, 263 − 1]; with 263 − 1 being the maximal possible weight. We further ensure that the

maximal sum of weights is less than 264 − 1, as described in the official rules of the MSE [8].

2.2. Comparing and Logging Results

In the following, we discuss challenges in fuzzing a single MaxSAT solver and present our

solution WCNFCompare, a Python tool to automate the comparison, validation, and logging of

multiple MaxSAT solver results.

Evaluating the optimality of a single fuzzed MaxSAT solver presents a challenge in the

absence of a certified proof or solver. To address these issues, we introduce WCNFCompare, a

Python tool that automates the process of comparing the results produced by multiple MaxSAT

solvers. In its default configuration, WCNFCompare runs all solvers mentioned in Section 1, with

a default timeout of 20 seconds for each solver. It then verifies the satisfiability of hard clauses,

and checks the o-value against the model for each solver result, using our WCNFVerifier. We

use the best model verified solution as a representative for the unverified optimal outcome. If

other solvers do not produce the same o-value, it indicates an erroneous result. Subsequently,

the tool classifies results into approximately 30 different fault classes, which are doubled again,

depending on the sum of weights, as discussed in Section 2.4. Each solver is assigned a number,

as are the types of faults that occur (see Section 2.4), with fault types numbered from 1 to 60

within the tool. If multiple errors occur, then the exit codes and solver position are added up

and taken modulo 255, as 255 is the highest possible exit code.

One limitation of the comparison script is that identical exit codes can emerge from various

solver failure combinations. Consequently, as the delta debugger reduces instances only con-

sidering the exit code, we can end up with different solver-fault combinations at the end of a

reduction. To address this issue, we introduced a command line option that restricts the script

to only return the exit code of a single solver for the delta debugger run.

WCNFCompare also logs results, generating individual files for each WCNF-solver-fault com-

bination. As fuzzing and delta debugging can run concurrently on multiple cores, we need

to prevent access to the same solver-fault combinations logfile from multiple cores, which is

done by adding a unique seed. These files contain a clear fault comparison overview, the final

o-values of each solver, error messages, and the solver’s output to stdout and stderr. At the end

of the whole fuzzing/delta debugging run, these log files are consolidated into a single log file

per solver fault combination. This approach offers a significant advantage: it permits the use of

any instance generation tool or shrinking tool, while maintaining a consistent logging process.

2.3. Delta Debugging

Delta debugging [41, 42, 43] is a powerful and efficient technique to isolate and simplify failure

causing inputs in software testing. If we apply delta debugging without restarts, we have a

complexity of𝒪(𝑛). It assists to identify the root cause of a problem by systematically decreasing

the size of a test input while preserving the failure triggering property.

This greedy approach attempts to remove portions of the input not contributing to the fault.

Initially, the approach attempts to remove the whole input, then successively reduces this to



half, a quarter, and so on. In the worst-case scenario, every second atomic element needs to be

removed, which makes the algorithm worse than merely iterating once through all elements.

Introducing WCNFddmin, a novel delta debugger with innovative features that extend beyond

capabilities of existing SAT, QBF, and SMT delta debuggers. Our tool includes the following re-

duction phases, which are processed sequentially, with the delta debugging algorithm performed

on each:

1. Removing Clauses: Tries to remove as many clauses as possible, not differentiating

between soft and hard clauses.

2. Removing Variables: Creates a list of all variables in the problem instance and iterates

over them in the delta debugging approach to remove as many variables as possible. The

WCNF printing function takes care of removing the corresponding literals out of the

clauses. Empty clauses are treated as if the entire clause was removed.

3. Removing Literals: Treats all literals in all clauses as a long list of literals and applies

the algorithm on this list. As for the variables, the printing function removes finally the

literals.

4. NEW Converting soft to hard clauses: WCNFddmin tries to transform as many soft into

hard clauses as possible. Soft clauses are generally more difficult to handle by a MaxSAT

solver and the optimization problem becomes easier for a human reader to understand

with more hard clauses.

5. NEW Weight reduction to 1: As big weights are normally harder to handle by the solver

or human debugger, we try to reduce as many weights as possible to 1.

6. NEW Binary weight reduction phase: The debugger systematically lowers the weight

of soft clauses with weights greater than 1 through a kind of binary search. If multiple

weights are selected the weight is halved, as long as the compare script returns the same

exit code. Only if a single weight is processed a real binary search can be performed. In

the default case the weight is reduced until the upper bound minus the lower bound are

10% or less of the original weight. In practice this phase is the most expensive one.

Techniques 1 to 3 are already known by CNF delta debugger as CNFddmin [17] and the

additional techniques are new reduction ideas. To the best of our knowledge, we are the first to

apply techniques repeatedly in a delta debugger. We do this until either no further improvements

are possible or until the reduction progress after the i’th round for 𝑖 > 3 falls below 𝑖− 3%. We

consider each technique separately in this process. As far as we know, our tool is the first to

present the following features, each can be reversed if not successful:

1. NEW Shuffling clauses: Randomly changes the order of clauses.

2. NEW Shuffling literals in each clause: Randomly rearranges the literals in each clause.

3. NEW Renaming variables: Ensures that there are no variable numbering gaps.

WCNFddmin’s unique features and 𝒪(𝑛) complexity make it an advanced tool for isolating and

simplifying failure-inducing inputs in MaxSAT problems, supporting developers in discovering

root causes of solver bugs. Additionally, during the reduction process, WCNFCompare is called

for all created WCNF instances. We are the first to log errors and saving fault triggering WCNFs



arising during the reduction phase. Instances that might not have been generated by the initial

fuzzer are produced. This aims to uncover additional interesting new solver-fault combinations

that might have remained undetected otherwise.

2.4. Fault Classification

Next, we discuss how faults, in the context of MaxSAT solvers, can be classified. Therefore,

we introduce four main fault classes: Crashes, Lower/Upper Bound Violations, Performance

Regressions, and Other Issues.

WCNFCompare originally returns 60 different fault classes for which 1-30 are for a sum of

weight smaller than 232 and the 31-60 debug the same faults for bigger weights. We simplified

this list into four main and 14 subclasses, still differentiating between small and big weights.

In order to simplify the fault classification list, we propose the following notation for the

different types of o-values: let 𝑜
solver

denote the best o-value given in the solver output, 𝑜
model

denotes the o-value represented by the solver’s model (as calculated by the model-verifier), and

finally 𝑜min denotes the best verified o-value of all solvers. Using this notation, we present the

different fault classes and their respective errors:

1. Crashes:

1.1. MaxSAT solver’s exit code is 134 (SIGABRT, internal error or inconsistency)

1.2. MaxSAT solver’s exit code is 135 (SIGSEGV, segmentation fault)

1.3. MaxSAT solver’s exit code is 136 (SIGFPE, arithmetic error or overflow)

1.4. MaxSAT solver’s exit code is 137 (SIGKILL, immediately shutdown)

1.5. MaxSAT solver’s exit code is 139 (SIGSEGV / SIGBUS, segmentation or bus fault)

1.6. MaxSAT solver’s exit code is XXX (all other exit codes)

2. Bound Violations:

2.1. 𝑜min < 𝑜
solver

and 𝑜
solver

== 𝑜
model

2.2. 𝑜
solver

̸= 𝑜
model

and 𝑜
model

̸= 𝑜min and 𝑜
solver

̸= 𝑜min .

2.3. Either 𝑜
model

or 𝑜
solver

unequals 𝑜min.

2.4. Verifier asserts that provided model is UNSATISFIABLE.

2.5. Verifier states hard clauses are SATISFIABLE, but solver states UNSATISFIABLE.

3. Performance Regressions:

3.1. Potential Fault: Solver had timeout, but this timeout is 50 times larger than the

average time of the non-timeout solvers.

4. Other Issues:

4.1. Solver has an error either stated in stdout or stderr.

4.2. Inconsistency in status line and output.

4.3. Unexpected behavior of a verifier.



Determining the severity of these errors is a crucial aspect. As an example, fault 3.1. is only a

potential fault that may indicate a performance issue or a more severe infinite loop problem.

Generally it is not considered a serious fault. Crashes are more severe, but at least they do not

deliver an incorrect value/model which we tend to trust. Bound violations, on the other hand

are considered serious, as we cannot trust the solver reliability. Most of these faults can be

detected with a sanity check, which implies a check if the hard clauses are satisfiable and if the

model’s o-value matches the given solver o-value. This suggests that the most critical fault in

these violations could occur if this quick check appears to be sane, yet a fault such as the one

indicated by 2.1. is still present. In the current version of our tool, we overlooked the inclusion

of a model sanity check. This means we only verify if the provided model already contradicts

the formula, without checking if the number of variables is correct. We have acknowledged this

oversight and plan to address it in the upcoming version of the tool.

The sequence in which these faults are evaluated during the fault classification process plays

an important role in ensuring an accurate fault detection. The order should minimize the risk

of missing important bugs as occurred in previous versions of the compare script. For instance,

the solver status should be evaluated before evaluating the o-value and model. Is it worth

considering the occurrence of multiple faults in a single solver run? If, for example an error

message is thrown, but has at the same time a bound violation, we decided to only catch the

bound violation, as we do not interpret error messages. Further some solver as MaxHS print

often such messages but still provides correct results. We believe that our approach has a good

balance between not over-categorizing faults and not neglecting important faults.

3. Results

In this section, we present results of our MaxSAT solver fuzzing and delta debugging experiments.

The tests were run on a system powered by an i9-12900 processor with 16 cores and 128 GB

of memory. The experiments were executed on all 16 cores around one week for fuzzing and

afterwards we performed delta debugging on the first five faults that occurred in each class of

the original 60 classes, which took another week. All experimental data, the regression suite,

and source code is available at https://cca.informatik.uni-freiburg.de/maxsatfuzz. During setup,

we challenged the following issues:

• Z3 doesn’t support competition standard output, therefore we implemented a transforma-

tion script.

• The MSE provides a useful benchmark code base for verifying models, transforming

WCNFs from new to old format and vice versa, and more. However, we could not use

these tools as they only accept a sum of weights up to 263, and we aimed to support the

full range up to 264 − 2, as it is standard in the competition.

• Z3, Pacose, and maxpre2 require the old evaluation format as input, we added a script

to rewrite the instances. However, this led to additional fault classes during parallel

execution, which were non-reproducible and hence, excluded from our results.

• Maxpre2 outputs the old v-line format regardless the command line options. We imple-

mented a script to rewrite the output, which likely triggered unverifiable fault classes.

https://cca.informatik.uni-freiburg.de/maxsatfuzz


Table 2
The fault occurrences in each fault class outlined in Subsection 2.4. Each cell contains 4 values, rep-

resented as
𝑎|𝑏
𝑐|𝑑, with the first row (a|b) representing results from fuzzing, and the second row (c|d)

representing fault occurrences triggered by delta debugging. The first value of each cell-row (
𝑎
𝑐 ) cor-

responds to instances with a sum of weights less than 232, while the second value (
𝑏
𝑑) corresponds to

a higher sum of weights, but less than 264 − 1. Several faulty instances triggered faults in multiple

solvers. The MSE 22’ solvers are arranged according to their rank in the weighted category. The table

shows
44|70
60|74 fault-solver occurrences in the four categories. It is evident that not all solver can reliably

handle higher weights, as indicated especially often by fault 2.5. (false classification of an instance as

unsatisfiable). Delta debugging triggered a wider range of faults, possibly due to the presence of less

structured instances with variable gaps, resulting from reduction and shuffling. Note that fault 4.3. is a

special case, in which the sum of weights equals 264 − 1 and the instance structure did not permit a

simple reduction. In these cases our verifier failed (only possible with exactly this sum). Still, some of

these instances from 4.3. caused all solver to produce incorrect results or crashes.

Crashes Bound Violations Perf. Other Issues

1. 2.1. 2.2. 2.3. 2.4. 2.5. 3. 4.1. 4.2. #faults

CASHWMaxSAT- | 8 1e4|3e3 1e4|5e3 2e4|8e4 1| | | 13 | 20 | 4e4|9e4
CorePlus [19] 822|2e3 6e3|1e4 9e3|7e4 2e4|3e5 260| | |1e4 82|1e4 | 3e4|4e5
CASHWMaxSAT- | 8 1e4|3e3 1e4|5e3 2e4|8e4 1| | | 13 | 20 | 4e4|9e4
Plus [20] 822|2e3 6e3|1e4 9e3|7e4 2e4|3e5 260| | |1e4 82|1e4 | 3e4|4e5
UWrMaxSat- | 7 3e4|8e3 5e4|2e4 5e4|9e4 266| 56 | | 16 | 21 | 1e5|1e5
SCIP [21] 822|1e3 7e3|1e4 1e4|1e5 2e4|3e5 505|265 | |5e3 |6e3 | 4e4|4e5
MaxHS [22] 1| 1 6e4|2e4 3e4|8e3 5e4|3e4 | | 2e4|5e3 1e4|4e3 8e3|3e3 2e5|7e4

249|395 2e4|3e4 1e4|3e4 2e4|1e5 | | 1e4|3e4 2e3|9e3 9e3|5e3 7e4|2e5
WMaxCDCL | 2 | 78 |138 9|3e3 2e5|5e4 |2e4 | 61 2|3e4 | 2e5|1e5
[23] 48|2e3 3|3e3 |7e3 2e3|3e4 3e4|7e4 |4e4 |1e4 932|2e5 | 3e4|3e5
WMaxCDCL- | 25 | 78 |138 9|3e3 2e5|5e4 |2e4 | 61 2|3e4 | 2e5|1e5
BandAll [24] 48|3e3 3|3e3 |7e3 2e3|3e4 3e4|7e4 |4e4 |1e4 932|2e5 | 3e4|3e5
UWrMaxSat [21] | 2| 14 | | | | | | | 2| 14

822| 792|609 | | | | 55| 4 | | 2e3|613
EvalMaxSAT [25] | | | | | | | | | 0| 0

822| | | | | | | | | 822|
CGSS [26] 3e5| 39| 17 | 4 |3e4 | | | | | 3e5|3e4

2e4| 9e3|5e3 |2e3 |1e5 | | | | | 2e4|1e5
Exact [27] | 1| | | | | 4| 12 | | 5| 12

2| 1e3| | | | | 2e3|4e3 | | 3e3|4e3

Pacose [28] 3e5|9e4 | 11| | | 2 | | 8 12| 23| 10 3e5|9e4
2e4|3e5 | 889|9e3 |1 |3 | | 3 1e3|268 2e3|3e3 3e4|3e5

z3maxres [29, 30] | 78|7e3 12|3e4 5|6e3 | |1e5 | 3 | | 95|1e5
| 5e3|3e4 1e3|8e4 2e3|4e4 | |4e5 359|2e3 | | 8e3|5e5

z3wmax [29, 30] | | 8 |185 |206 | 32 |1e5 | | 2e6|4e5 2e6|5e5
| |374 |2e3 281|9e3 481|1e3 |4e5 | | 3e5|7e5 3e5|1e6

z3rc2 [29, 30] | 7e5|1e5 5e4|4e4 2|4e3 | |1e5 | 2 | | 8e5|3e5
| 1e5|2e5 1e4|1e5 1e3|3e4 | |4e5 |646 | | 1e5|8e5

maxpre2 [31, 32] 2e5|8e3 | | 9e4|2e4 2e6|4e5 | | | | 2e6|5e5
+EvalMaxSAT 4e4|5e4 | | 4e4|7e4 2e5|9e5 | | | | 2e5|1e6

#faults 7e5|1e5 9e5|2e5 2e5|1e5 2e5|4e5 3e6|5e5 |3e5 2e4|6e3 1e4|6e4 2e6|4e5 7e6|2e6
8e4|3e5 2e5|3e5 6e4|5e5 1e5|1e6 2e5|1e6 |1e6 2e4|9e4 5e3|4e5 3e5|7e5 1e6|6e6

#faulty solver 4| 8 9| 11 7| 10 9| 11 6| 6 | 5 2| 10 4| 6 3| 3 44| 70
12| 8 11| 11 7| 11 10| 12 7| 6 | 5 4| 11 6| 7 3| 3 60| 74



cat red.wcnf
2 -1 0
2 -2 -3 0
1 1 4 0
3 -3 2 0
1 -5 3 -6 0
1 -6 3 -2 0
h 1 6 0
h 3 5 0
h 4 0

CASHWMaxSAT-CoreP*
... SCIP 7.0.3 ...
c SCIP optimum = 2
v 100110
o 2
s OPTIMUM FOUND

CASHWMaxSAT-Plus
... SCIP 7.0.3 ...
c SCIP optimum = 2
v 100110
o 2
s OPTIMUM FOUND

UWrMaxSat-SCIP
... SCIP 8.0.0 ...
c SCIP optimum: 2
v 100110
o 2
s OPTIMUM FOUND

MaxHS
... c #vars: 5
c #Clauses: 8 ...
o 2
s OPTIMUM FOUND
v 11011

z3rc2
c Convert WCNF
c Convert Output
s OPTIMUM FOUND
o 2
v 010111

EvalMaxSAT
s OPTIMUM FOUND
o 1
v 000111
c Total time: 347 µs

Figure 1: This shows a comparison of six solver outputs running the same WCNF instance (blue), all

but the solver of the bottom right (green) are faulty (orange). The first five solver claim that the result is

2 which matches their given model, while other solvers found a better result as shown by EvalMaxSAT.

We discovered this fault by our fuzzing (reproducible with seed 1633784527538860147) and reduced

the instance by our delta debugging technique. Remarkably, all top four solvers from the MaxSAT

Evaluation 22’ and Microsofts Z3 solver with the RC2 technique failed. The first three solvers, which do

not satisfy the first clause with their model, employ the SCIP solver in two versions as a preprocessor.

By deactivating it, we get correct results. Interestingly, different incorrect results were observed among

these SCIP versions in other examples (seed 2065838794411768763). MaxHS identifies only 5 variables

and 8 clauses; however, it is unlikely that this is due to a parser error, as each variable appears in at least

2 clauses. The incomplete model still produces a wrong result of 2 (variable 6 is irrelevant). Microsoft’s

Z3 solver found another incorrect o-value and model (not satisfying clauses 5 and 6). In contrast, other

solvers such as EvalMaxSAT (shown in green) found the optimal result of 1 (not satisfying clause 5).

These were also excluded from our results.

• Pacose sometimes writes "SATISFIABLE" instead of "s SATISFIABLE."

• Solvers throw different exit codes. For instance, when an optimum solution is found,

Exact returns 30, while Pacose returns an exit code of 10.

• CGSS and Exact only work with *.wcnf named files.

• In UWrMaxSat-SCIP, grepping for "UNSAT" in the verbose=0 variant let the status line

disappear.

Table 2 presents our findings, displaying the number of faults detected for each fault class,

as outlined in Section 2.4, in fuzzing and delta debugging runs. The exact numbers are not

crucial, as the detected faults increase at a consistent rate, if run for extended periods. A detailed

examination of the solvers during this study led to several interesting observations:

• Only MaxHS and Z3 can handle empty instances. This is the reason why EvalMaxSAT

crashed 822 times with exit code 255 and the UWrMaxSAT and CASHWMaxSAT variants

with exit code 139. This happens only during the reduction phase, as no empty instance

is generated with our fuzzer.

• CGSS and Pacose do not accept a file with only hard clauses, resulting in 271131 crashes.

• The following invalid exit codes occured causing a crash fault (fault category 1.): 1, 3, 105,

108, 134, 135, 136, 139, 141, 255

• CGSS throws exit code 1 for unsatisfiable instances - but the same exit code is thrown, if



the whole instance is empty. This means, that these instances are reduced to the empty

instance, after the first solver call of WCNFddmin.

Our proposed reduction techniques showed significant effectiveness. In some cases, the initial

reduction was minimal, but subsequent shuffling or clause renaming phases enabled significant

reductions. During the binary weight reduction phase, weights were typically reduced until

the difference between the upper and lower bounds was less than 10% of the original weight.

Disabling this percentage rule led to excessively long runs for large weights. Even with the 10%

rule in place, this phase, along with the literal reduction phase, was the most time-consuming.

Some instances took up to a week to reduce, particularly when performance regression (3.1)

occurred for instances with large numbers, making weight reduction a very time-intensive task.

The reduced instances uncovered intriguing problems, such as in Figure 1, where a fault was

significantly minimized. Another issue occured with the timeout fault class 3.1 in MaxHS due

to a simple instance with just three soft and one hard clause, the original instance (reproducible

with seed 193251431004265909) having 41 soft and 157 hard clauses. This problem forced MaxHS

into a type of infinite loop, only terminated by the technique’s 1500-second timeout. A nearly

identical error with another instance occurred with the Exact solver, but this time with a real

timeout. That instance (seed 1795142913688699408) could be reduced to 7 soft and 24 hard

clauses, underscoring that even timeouts can reveal interesting bugs.

Furthermore, we highlight that we could trigger 54 additional solver-fault combinations

during our delta debugging phase. As demonstrated in Table 2, these 54 combinations are

additional entries within the second line. The ability to invoke these additional combinations

is significant, as it provides further opportunities to probe the robustness of the solvers and

expose potential vulnerabilities. This observation underscores the value of our novel approach

of logging during the delta debugging phase, as it notably enhances the comprehensiveness of

our testing process.

The results of our MaxSAT solver fuzzing and delta debugging experiments reveal crucial

insights into the behavior and robustness of various solvers. Our fuzzer WCNFuzz effectively

detects a significant number of interesting faults due to WCNFcompare, in various fault classes.

Despite some initial challenges, our WCNFddmin tool leads to considerable reductions in input

instances and exposes interesting issues, such as unexpected exit codes, timeout faults and

interesting bound violations. These findings highlight the importance of rigorous testing and

debugging in the development and refinement of MaxSAT solvers.

4. Discussion

In the course of our research, we have constructed a useful regression set of interesting instances

that we believe will be beneficial for solver development. These instances include:

• Empty instance, empty soft/hard clause.

• Non trivial reducible maximal weight instances with a maximum single weight 263 − 1
and a maximal sum of weights 264 − 2.

• Simple unsatisfiable instances.

• Tautology soft/hard clauses



• With our fuzzer created and delta debugged instances for each fault class-solver combina-

tion, causing each at least one solver to crash.

At least one of these instances are triggering a fault in all the tested solvers, as some of these

instances are not yet supported by the official rules. E.g. empty clauses / instances cannot be

handled even by most SAT solvers. We suggest the following rules be incorporated into the

competition solver rules:

• An empty instance should yield a weight "o 0", with an empty model line "v" and the

status line "s OPTIMUM FOUND".

• An unsatisfiable instance should produce the status line "s UNSATISFIABLE".

• An empty hard clause should result in an unsatisfiable instance.

• An empty soft clause should be unsatisfiable, but the instance can still be satisfiable.

• The exit code of a solver should be 0 for all results but "s UNKNOWN".

We would like to offer the MaxSAT community these instances, provided as a zip file from

the MSE homepage, along with a script executing the solver with a subset or all instances

and verifying the results and models. This surely would assist developers in improving the

robustness of their solvers.

5. Conclusion

In this research, we explored an automated testing approach for MaxSAT solvers, utilizing

fuzzing and delta debugging techniques to uncover and minimize intriguing faults.

Our proposed techniques are notably effective. While initial reduction was not always

significant, subsequent shuffling or clause renaming phases enabled substantial reductions. The

input instances were significantly reduced during the delta debugging phase, and our methods

allowed us to identify and isolate critical issues, even within large, complex instances.

We also created a compact regression suite of small instances for solver development, which

were shown to trigger specific errors in all tested solvers. We will provide these instances along

with a script for executing and verifying the solver’s results to the MaxSAT community. We

also proposed new rules to include in the MaxSAT Evaluation rulebook, to ensure the standard

handling of basic clauses as provided by our regression suite.

In conclusion, our research demonstrates that automated testing methods, such as fuzzing

and delta debugging, can trigger severe faults in MaxSAT solvers. We believe that our work

will significantly contribute to the ongoing efforts to enhance the robustness and reliability of

these solvers.
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A. Interesting Faults and Additional Tables
$ cat faulty/bug-2999777783999949289.wcnf
c seed 2999777783999949289
...
c variables 91
c hard clauses 312
c soft clauses 143
c sum of weights 2330668
...

$ ./cashwmaxsatcoreplus -no-bin -no-sat -m -no-par -bm bug-2999777783999949289.wcnf
c Using SCIP solver, version 7.0.3, https://www.scipopt.org
c scip_time = 600.000000
c Starting SCIP solver (with time-limit = 600s) ...
c SCIP optimum = 47778
v 0001010100100000100110000001011000111000000110110111000110111010100110100111100111011010000
o 47778
s OPTIMUM FOUND

$ ./cashwmaxsatplus -no-bin -no-sat -no-par -bm -m bug-2999777783999949289.wcnf
c Using SCIP solver, version 7.0.3, https://www.scipopt.org
c Starting SCIP solver (with time-limit = 600s) ...
c SCIP optimum = 47778
v 0001010100100000100110000001011000111000000110110111000110111010100110100111100111011010000
o 47778
s OPTIMUM FOUND

$ ./uwrmaxsat -v0 -no-bin -no-sat -no-par -scip-cpu=500 -m -bm bug-2999777783999949289.wcnf
c Using COMiniSatPS SAT solver by Chanseok Oh (2016)
c Using SCIP solver, version 8.0.0, https://www.scipopt.org
c Starting SCIP solver (with time-limit = 500s) ...
c SCIP optimum: 47778
v 0001010110100000101110000001011010111101000110110101000110111010100110100101100011010010000
o 47778
s OPTIMUM FOUND

$ ./maxhs -no-printOptions -printSoln bug-2999777783999949289.wcnf
...
c WARNING blit in model not set to false when soft is satisfied
c Solved by solve_wt_lsu (fine).
o 35620
s OPTIMUM FOUND
v 1011011100101000100000000111001011011001000001001111010111101011101010001101100101010100001
...

$ ./z3rc2.sh bug-2999777783999949289.wcnf
c Converting to old format:
c Run Z3 Solver and convert Output to standard output format:
s OPTIMUM FOUND
o 29806
v 0010001101101100110010010011001011011101100101000111110101000111100010001000000111010100010

Correct solution:
$ ./EvalMaxSAT_bin bug-2999777783999949289.wcnf
s OPTIMUM FOUND
o 25997
v 0010001100101100010000000010001010010001000101000111110001000101100010001000000111010000010
c Total time: 2.98 ms



$ cat red.wcnf
1 1 2 0
2 -3 0
1 -4 3 1 0
2 3 -1 0
3 5 0
h 3 4 0
h 2 0

$ ./Cash-CP red.wcnf
... SCIP 7.0.3 ...
c SCIP optimum = 2
v 11111
o 2
s OPTIMUM FOUND

$ ./Cash-P red.wcnf
... SCIP 7.0.3 ...
c SCIP optimum = 2
v 11111
o 2
s OPTIMUM FOUND

$ ./UWMS-S red.wcnf
... SCIP 8.0.0 ...
c SCIP optimum: 2
v 11111
o 2
s OPTIMUM FOUND

$./MaxHS red.wcnf
... solve_unwt_lsu.
o 2
s OPTIMUM FOUND
v 11011

$ ./EvalMS red.wcnf
s OPTIMUM FOUND
o 1
v 01011
c Total time: 468 µs

Figure 2: Example: red-1633784527538860147.wcnf

Table 3
Fault classification for FUZZED faults with a sum of weights 0 <= sow < 232

1. 2.1. 2.2. 2.3. 2.4. 2.5. 3. 4.1. 4.2. 4.3.

CASHWMaxSAT-CorePlus 12272 12581 16103 1

CASHWMaxSAT-Plus 12273 12581 16102 1

UWrMaxSat-SCIP 26948 47838 51976 266

MaxHS 1 64118 25031 53404 16987 13862 8008

WMaxCDCL 9 246599 2

WMaxCDCL-bandall 9 246599 2

UWrMaxSat 2

EvalMaxSAT

CGSS 272131 39

textscExact 1 4

z3maxres 78 12 5

z3wmax 2214409

z3rc2 744136 53451 2

z3pd-maxres 68 23 6

z3maxres-bin 77 10 5

Pacose 272512 11 12 23

maxpre2EvalMaxSAT 165433 87668 2071078

# faults 710077 860012 151538 225289 2564544 16991 13878 2222440

# faulty solver 4 11 9 11 6 2 4 3



Table 4
Fault classification for FUZZED faults with a sum of weights 232 <= sow < 264 − 1

1. 2.1. 2.2. 2.3. 2.4. 2.5. 3. 4.1. 4.2. 4.3.

CASHWMaxSAT-CorePlus 8 3476 5213 82742 13 20

CASHWMaxSAT-Plus 8 3476 5213 82743 13 20

UWrMaxSat-SCIP 7 7571 19026 88541 57 16 21

MaxHS 1 15765 8474 34689 5358 3513 2555

WMaxCDCL 2 78 141 3347 50183 24803 61 26451

WMaxCDCL-bandall 25 78 141 3347 50183 24803 61 26428

UWrMaxSat 15

EvalMaxSAT

CGSS 17 4 26523

textscExact 12

z3maxres 7082 25777 6144 95406 3

z3wmax 8 185 207 32 95406 403532

z3rc2 138926 36401 4093 95408 2

z3pd-maxres 7083 25781 6144 95407 3

z3maxres-bin 7074 25777 6144 95407 4

Pacose 92198 1 7 5 112 48 10

maxpre2EvalMaxSAT 8131 20953 443308

# faults 100380 190650 152140 365622 543875 526640 5594 56453 406097

# faulty solver 8 14 13 14 6 7 12 6 3

Table 5
Fault classification for Delta Debugged faults with a sum of weights 0 <= sow < 232

1. 2.1. 2.2. 2.3. 2.4. 2.5. 3. 4.1. 4.2. 4.3.

CASHWMaxSAT-CorePlus 822 6486 9225 16811 260 82

CASHWMaxSAT-Plus 822 6486 9224 16812 260 82

UWrMaxSat-SCIP 822 7095 11828 18079 505

MaxHS 249 17014 14059 18186 13134 2160 8887

WMaxCDCL 48 3 2092 25051 932

WMaxCDCL-bandall 48 3 2092 25051 932

UWrMaxSat 822 792 55

EvalMaxSAT 822

CGSS 16294 8545

textscExact 2 1046 1866

z3maxres 4592 1312 1543 359

z3wmax 281 481 324996

z3rc2 134985 10870 1394

z3pd-maxres 330 3949 1956 1439 359

z3maxres-bin 4865 1490 1542 364

Pacose 23933 889 1171 1935

maxpre2EvalMaxSAT 37417 41664 160573

# faults 82431 195861 60853 121935 212181 16137 5359 335818

# faulty solver 13 13 9 12 7 6 6 3



Table 6
Fault classification for Delta Debugged faults with a sum of weights 232 <= sow < 264 − 1

1. 2.1. 2.2. 2.3. 2.4. 2.5. 3. 4.1. 4.2. 4.3.

CASHWMaxSAT-CorePlus 2634 12214 70969 312752 13003 9677

CASHWMaxSAT-Plus 2633 12219 70968 312752 12994 9677 1

UWrMaxSat-SCIP 1705 12172 118228 262718 265 5331 5855

MaxHS 395 28091 31184 124795 31204 8665 4772 8

WMaxCDCL 1561 3150 7349 27103 84320 39035 12234 181274 8

WMaxCDCL-bandall 3195 3150 7349 27103 84320 39035 12234 179641 8

UWrMaxSat 611 4 8

EvalMaxSAT 16

CGSS 4729 1940 117190 8

textscExact 3887 8

z3maxres 32542 82538 35633 394407 2226 8

z3wmax 374 2497 8793 1232 394416 732843 8

z3rc2 240668 100737 31865 394410 646 8

z3pd-maxres 1 32501 82578 35645 394411 2224 8

z3maxres-bin 32559 82076 35632 394410 2048 8

Pacose 275911 100 9825 633 8327 488 268 3111 8

maxpre2EvalMaxSAT 47821 69915 909422 8

# faults 335856 415080 668238 1402529 1087886 2050124 98523 395057 740726 121

# faulty solver 9 14 13 14 6 7 13 7 3 15


	1 Introduction
	2 Methodology
	2.1 Fuzz testing
	2.2 Comparing and Logging Results
	2.3 Delta Debugging
	2.4 Fault Classification

	3 Results
	4 Discussion
	5 Conclusion
	A Interesting Faults and Additional Tables

