
Compressing UNSAT Search Trees with Caching:
an update

Anthony BLOMME, Daniel LE BERRE, Anne PARRAIN,
Olivier ROUSSEL

CRIL, Université d’Artois & CNRS

July, 2023



Context 1

Machine Learning is everywhere

The rationale of the outcome of those “black boxes” is hard to
explain making XAI a very trendy topic

Many people no longer trust computer programs

Even if it is a deterministic constraint programming solver



What is an explanation for a SAT solver? 2

▶ several target users (solver expert, modeling expert or user)
▶ several levels of explanation (clauses, high level constraints,

. . .)
▶ foundation of the explanation (logical reasoning, statistical

reasoning, . . .)
▶ . . .

This work: focus on the information provided by the solver, i.e. it’s
search tree



What is an explanation for a SAT solver? 2

▶ several target users (solver expert, modeling expert or user)
▶ several levels of explanation (clauses, high level constraints,

. . .)
▶ foundation of the explanation (logical reasoning, statistical

reasoning, . . .)
▶ . . .

This work: focus on the information provided by the solver, i.e. it’s
search tree



Case of satisfiable formulas 3

Why is it a solution ?

▶ All the clauses are satisfied

▶ Compact representation (prime implicant)

Why this particular solution ?

▶ Logical justification: logical implication (which reduces to
UNSAT proof), backbone

▶ Statistical justification: probability(x = true)

▶ Solver’s decisions have no logical explanation!



Put colors in your models with Sat4j 4

$ java -Dcolor -jar org.sat4j.core.jar file.cnf



Case of unsatisfiable formulas 5

Why is there no solution?

Prove the impossibility of a solution

▶ UNSAT certificate or MUS (too large in general)

▶ Reduce a posteriori the size of the search tree:
▶ Delete useless decisions and propagations
▶ Reorder the nodes
▶ Recognize recurring patterns



Case of unsatisfiable formulas 5

Why is there no solution?

Prove the impossibility of a solution

▶ UNSAT certificate or MUS (too large in general)

▶ Reduce a posteriori the size of the search tree:
▶ Delete useless decisions and propagations
▶ Reorder the nodes
▶ Recognize recurring patterns



Recognize recurring patterns 6

Recognize equivalent subformulas (renamings, inclusions).

Do not explain the unsatisfiability of a formula twice.

Link similar proofs together (single explanation).



Motivating example: the pigeon hole problem 7



Use of a cache system 8

Idea: Build a cache with proven unsatisfiable subformulas and try
to recognize them later

Inspired by model counters and compilers, here specialized to the
UNSAT case.

▶ Light minimization: use only the clauses involved in the
conflict (sources)

▶ Use a normalized representation to register subformulas
▶ If a subformula is equal to an entry of the cache, we can

prune the branch

Does not work on PHP example: sub-PHP instances are built on
different variables and clauses

If the subformula contain the cache entry it is also UNSAT



Use of a cache system 8

Idea: Build a cache with proven unsatisfiable subformulas and try
to recognize them later

Inspired by model counters and compilers, here specialized to the
UNSAT case.

▶ Light minimization: use only the clauses involved in the
conflict (sources)

▶ Use a normalized representation to register subformulas
▶ If a subformula is equal to an entry of the cache, we can

prune the branch

Does not work on PHP example: sub-PHP instances are built on
different variables and clauses

If the subformula contain the cache entry it is also UNSAT



Generalizing the cache system 9

Generalize equality:

▶ detect if an entry of the cache is a subset of the current
subformula

▶ allow variable renaming

Subgraph isomorphism allows to test if, after renaming the
variables, an entry of the cache is included in the current
subformula. If it is the case, we can prune the branch.

Glasgow Subgraph Solver is used to detect subgraph isomorphisms
(⇒ classic encoding of subformulas).



Example of colored graph representation of a CNF 10

Colored graph representation of the formula
(¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2)



Example of colored graph representation of a CNF 11

Colored graph representation of the formula
(¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2)



Does it work? the marg2x2.cnf instance DPLL 12



When to cache? 13

▶ We have to be sure that the entry corresponds to an UNSAT
formula.

▶ With a DPLL approach, it can be done for any node in the
search tree
▶ on the leaves, corresponding to conflicts
▶ on internal nodes, once both children are found UNSAT

▶ With a CDCL approach, things are more complicated . . .



Problem of backjumps in CDCL solvers 14

Problem 1: When backjumping, the search is not complete and we
do not know if the unexplored subformulas are unsatisfiable

The caching is performed at the leaves, when encountering a
conflict.



Integration in CDCL: conflicting clause on cache hit 15

Problem 2 (technical): When we hit an entry in the cache, we
need a conflict clause to backtrack. How to build it?

When recognizing an entry, we create a conflict composed of the
falsified literals in the matching clauses. The conflict analysis can
be performed with this clause.

If those literals are not from the current decision level, backtrack
to the lowest decision level before performing conflict analysis.



marg2x3.cnf instance with CDCL 16



Generalized isomorphisms 17

Expecting x1 ∨ x2 and got xa ∨ xb ∨ xc ∨ xd : matches?

Expecting x1 ∨ x2 ∨ x3 and got xa ∨ xb ∨ xc ∨ xd : matches?

Detect entries of the cache even if some literals are falsified.

▶ Do not delete satisfied clauses and satisfied literals are
considered unassigned

▶ Create variants of clauses with falsified literals. Create all the
possibilities from the complete original clause to the clause
with all falsified literals removed

▶ Selector nodes are used to avoid using several variants of a
same clause

Encoding of exponential size but the number of added clauses is,
in general, reasonable compared to the original number of clauses.



Generalized isomorphisms 17

Expecting x1 ∨ x2 and got xa ∨ xb ∨ xc ∨ xd : matches?

Expecting x1 ∨ x2 ∨ x3 and got xa ∨ xb ∨ xc ∨ xd : matches?

Detect entries of the cache even if some literals are falsified.

▶ Do not delete satisfied clauses and satisfied literals are
considered unassigned

▶ Create variants of clauses with falsified literals. Create all the
possibilities from the complete original clause to the clause
with all falsified literals removed

▶ Selector nodes are used to avoid using several variants of a
same clause

Encoding of exponential size but the number of added clauses is,
in general, reasonable compared to the original number of clauses.



Generalized isomorphisms 17

Expecting x1 ∨ x2 and got xa ∨ xb ∨ xc ∨ xd : matches?

Expecting x1 ∨ x2 ∨ x3 and got xa ∨ xb ∨ xc ∨ xd : matches?

Detect entries of the cache even if some literals are falsified.

▶ Do not delete satisfied clauses and satisfied literals are
considered unassigned

▶ Create variants of clauses with falsified literals. Create all the
possibilities from the complete original clause to the clause
with all falsified literals removed

▶ Selector nodes are used to avoid using several variants of a
same clause

Encoding of exponential size but the number of added clauses is,
in general, reasonable compared to the original number of clauses.



Generalized isomorphisms colored graph 18



Implementation in a CDCL solver 19

Implemented on top of Minisat.

The cache lookup is performed before taking a decision.

Cache lookup is translated into a subgraph isomorphism problem
and then given to Glasgow Subgraph Solver.

Time limit of 2 seconds (regular isomorphisms) or 4 seconds
(generalized isomorphisms) for each call to Glasgow Subgraph
Solver.



Environment for the experiments 20

▶ We consider UNSAT instances from the SAT’02 and SAT’03
competitions
▶ “Easy” for DPLL and CDCL
▶ Small enough for expensive algorithms

▶ A total of 579 UNSAT instances
▶ SAT’02: 381 instances
▶ SAT’03: 198 instances

▶ Time limit:
▶ Regular isomorphisms: 15 minutes
▶ Generalized isomorphisms: 30 minutes



Some results (pruning after search, regular) 21

Instance Size Conflicts Conflicts Compression
(no cache) (cache) Ratio

PHP7 448 5.6 103 853 1.5 10−1

PHP12 2,028 - - -
marg2x6.sat03-1444 528 3.0 104 20 6.6 10−4

marg3x3add8.sat03-1449 1,056 1.8 105 32 1.8 10−4

Urquhart-s3-b9 1,240 1.9 104 21 1.1 10−3

Urquhart-s3-b3 2,152 1.6 106 29 1.8 10−5

x1 16 364 2.2 103 20 9.1 10−3

x1 24 556 2.0 105 78 3.9 10−4

3col20 5 6 646 27 27 1
3col40 5 4 1,286 92 64 7.0 10−1

homer06 1,800 - - -

▶ 117/579 instances solved
▶ Some traces were too large to be postprocessed



Some results (pruning during search, regular) 22

▶ 185/579 instances solved



Some results (pruning during search, generalized) 23

▶ 89/579 instances solved



Conclusion 24

▶ Our goal is to reduce drastically some UNSAT search trees so
that they can be shown to the user

▶ We propose a syntactic approach based on the detection of
subgraph isomorphisms

▶ Interesting results obtained on some highly structured families
of instances

▶ Future research directions:
▶ Better encoding for managing assigned literals in cache entries
▶ Delete entries that do not seem useful
▶ Incremental use of Glasgow Subgraph Solver
▶ Try other heuristics



Compressing UNSAT Search Trees with Caching:
an update

Anthony BLOMME, Daniel LE BERRE, Anne PARRAIN,
Olivier ROUSSEL

CRIL, Université d’Artois & CNRS

July, 2023


