
Tbuddy: a Proof-Generating BDD Package

Randal E. Bryant

August, 2022

Bryant: Pragmatics of SAT 22 1 / 33

Motivation: Parity Benchmark

I Chew and Heule, SAT 2020

I For random permtuation π:

x1 ⊕ x2 ⊕ · · · ⊕ xn = 1 Odd parity
xπ(1) ⊕ xπ(2) ⊕ · · · ⊕ xπ(n) = 0 Even parity

I Conjunction unsatisfiable

Bryant: Pragmatics of SAT 22 2 / 33

Motivation: Parity Benchmark Runtime

10 100 1,000 10,000 100,000 1,000,000
0.01

0.1

1.0

10.0

100.0

600.0

KISSAT

I KISSAT: State-of-the-art CDCL solver

I 3 different seeds for each value of n

I Limited to n ≤ 42 within 600 seconds

Bryant: Pragmatics of SAT 22 3 / 33

BDD Representation of Parity Constraints
Odd Parity

x1

x2 x2

x3 x3

x4 x4

x5 x5

0 1

Even Parity

x1

x2 x2

x3 x3

x4 x4

x5 x5

1 0

I Linear complexity

I Insensitive to variable order

I Potential major advantage over CDCL

Bryant: Pragmatics of SAT 22 4 / 33

Trusted Binary Decision Diagrams (TBDDs)

Motivation

I BDDs can outperform CDCL on some classes of problems

I Need to be able to generate proofs of unsatisfiability

Concept

I Generate clausal proof as BDD operations proceed

I Standalone solver, plus can incorporate into other solvers

Implementation

I Build on BuDDy BDD package

I Also support parity reasoning

Bryant: Pragmatics of SAT 22 5 / 33

Reduced Ordered Binary Decision Diagrams (BDDs)
Represent Boolean Function as Graph

I Canonical form

I Simple algorithms to construct &
manipulate

Used in SAT, Model Checking, . . .
I Bottom-up approach

I Construct canonical representation
I Generate solutions

I Compare to CDCL
I Top-down approach
I Keep branching on variables until

find solution

x1

x2

x3

0 1

Bryant: Pragmatics of SAT 22 6 / 33

Apply Algorithm

w ← u � v

I u, v , w BDD root nodes representing
Boolean functions

I � binary Boolean operator
I E.g., ∧, ∨, ⊕

u
a

b

c

d

0 1

F1

F2

F6

F3

F4 F5

∨
v
a

c

d

0 1

G1

G5

G2

G3 G4

→

w = u ∨ v
a

b

c

d

0 1

Bryant: Pragmatics of SAT 22 7 / 33

Extended Resolution and BDDs

Extended Resolution

I Tseitin, 1967
I Extension variable z becomes shorthand for formula F

I F : Boolean formula over input and earlier extension variables

I Add defining clauses
I Encode constraint of form z ↔ F

I Repeated use can yield exponentially smaller proof

I Supported by DRAT proof framework

Bryant: Pragmatics of SAT 22 8 / 33

Extended Resolution and BDDs

Extended Resolution

I Tseitin, 1967
I Extension variable z becomes shorthand for formula F

I F : Boolean formula over input and earlier extension variables

I Add defining clauses
I Encode constraint of form z ↔ F

I Repeated use can yield exponentially smaller proof

I Supported by DRAT proof framework

Proof-Generating BDD Operations

I Biere, Sinz, Jussila, 2006

I Each node u has associated extension variable u

I Each recursive step of Apply algorithm justified as proof steps

Bryant: Pragmatics of SAT 22 8 / 33

Generating Extended Resolution Proofs

I Extension variable u for each node u in BDD

xu

u0 u1

I Defining clauses encode constraint u ↔ ITE (x , u1, u0)

Clause name Formula Clausal form

HD(u) x → (u → u1) x ∨ u ∨ u1
LD(u) x → (u → u0) x ∨ u ∨ u0
HU(u) x → (u1 → u) x ∨ u1 ∨ u
LU(u) x → (u0 → u) x ∨ u0 ∨ u

Bryant: Pragmatics of SAT 22 9 / 33

Apply Algorithm Recursion

Apply(u, v ,∧)

xu

u0 u1

xv

v0 v1

Recursion

Apply(u1, v1,∧) → w1

Apply(u0, v0,∧) → w0

Result

xw

w0 w1

Bryant: Pragmatics of SAT 22 10 / 33

Apply Algorithm Recursion

Apply(u, v ,∧)

xu

u0 u1

xv

v0 v1

Recursion

Apply(u1, v1,∧) → w1

Apply(u0, v0,∧) → w0

Result

xw

w0 w1

Bryant: Pragmatics of SAT 22 10 / 33

Apply Algorithm Recursion

Apply(u, v ,∧)

xu

u0 u1

xv

v0 v1

Recursion

Apply(u1, v1,∧) → w1

Apply(u0, v0,∧) → w0

Result

xw

w0 w1

Bryant: Pragmatics of SAT 22 10 / 33

Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation

I When Apply(u, v ,∧) returns w , also generate proof
u ∧ v → w

I Key Idea: Proof based on the underlying logic of the Apply
algorithm

Proof Structure
I Assume recursive calls generate proofs

I u1 ∧ v1 → w1

I u0 ∧ v0 → w0

I Combine with defining clauses for nodes u, v , and w

Bryant: Pragmatics of SAT 22 11 / 33

Apply Proof Structure

Defining Clauses

Clause Formula Clause Formula
HD(u) x → (u → u1) LD(u) x → (u → u0)
HD(v) x → (v → v1) LD(v) x → (v → v0)
HU(w) x → (w1 → w) LU(w) x → (w0 → w)

Resolution Steps

x → (u → u1)

x → (v → v1)

x → (w1 → w) u1 ∧ v1 → w1

x → (u ∧ v → w)

x → (u → u0)

x → (v → v0)

x → (w0 → w) u0 ∧ v0 → w0

x → (u ∧ v → w)

u ∧ v → w

Can express as two reverse unit propagation (RUP) proof steps

Bryant: Pragmatics of SAT 22 12 / 33

Quantification Operation

Operation EQuant(u, x)

∃x f = f |x=0 ∨ f |x=1

I Abstract away details of satisfying solutions
I Not logically required for SAT solver

I But, critical for obtaining good performance

Proof Generation

I Do not attempt to follow recursive structure of algorithm
I Instead, follow with separate implication proof generation

I EQuant(u, x)→ w
I Generate proof u → w
I Algorithm similar to proof-generating Apply operation

Bryant: Pragmatics of SAT 22 13 / 33

Trusted BDDs (TBDDs)

Components of TBDD u̇
I BDD with root node u.

I Associated extension variable u

I Proof step for unit clause [u]

Interpretation. For input formula φ:

I φ � u

I Any variable assignment that satisfies φ must yield 1 for BDD
with root u

Bryant: Pragmatics of SAT 22 14 / 33

TBDD API

tbdd tbdd from clause id(int i);
I Create TBDD representation u̇i of input clause Ci

I Add proof step for Ci � ui

tbdd tbdd and(tbdd u̇, tbdd v̇);
I Form conjunction ẇ of TBDDs u̇ and v̇ .

I Apply operation generates proof u ∧ v → w
I Resolution with unit clauses [u] and [v] yields unit clause [w]

tbdd tbdd validate(bdd v, tbdd u̇);
I Upgrade BDD v to TBDD v̇

I Apply operation generates proof u → v
I Resolution with unit clause [u] yields unit clause [v]

Bryant: Pragmatics of SAT 22 15 / 33

TBDD Execution Example
u̇1 ←− tbdd from clause(C1)
u̇2 ←− tbdd from clause(C2)

a a

b

c

0 1 0 1

C1 � u1 C2 � u2

u̇1 u̇2

Bryant: Pragmatics of SAT 22 16 / 33

TBDD Execution Example
u̇3 ←− tbdd and(u̇1, u̇2)

a a a

b b

c c

0 1 0 1 0 1

C1 � u1 C2 � u2 C1,C2 � u3

u̇1 u̇2 u̇3

Bryant: Pragmatics of SAT 22 16 / 33

TBDD Execution Example
u4 ←− bdd exists(u3, a)

a a a

b b b

c c c

0 1 0 1 0 1 0 1

C1 � u1 C2 � u2 C1,C2 � u3

u̇1 u̇2 u̇3 u4

Bryant: Pragmatics of SAT 22 16 / 33

TBDD Execution Example
u4 ←− bdd exists(u3, a)
u̇4 ←− tbdd validate(u4, u̇3)

a a a

b b b

c c c

0 1 0 1 0 1 0 1

C1 � u1 C2 � u2 C1,C2 � u3 C1,C2 � u4

u̇1 u̇2 u̇3 u̇4

Bryant: Pragmatics of SAT 22 16 / 33

Clausal Proof (LRAT Format)

ID Clause Hints

Defining clauses for node u17 = ITE(x2,u9,u8)

68 17 -9 -2 0 0

69 17 -8 2 0 0

70 -17 9 -2 0 -68 -69 0

71 -17 8 2 0 -68 -69 0

I Variables denoted by signed integers
I xi → −i
I x i → −i

I Each clause identified by numerical ID
I Clause addition justified by list of hints

I For defining clause, list of clauses for which extension variable
has opposite polarity

Bryant: Pragmatics of SAT 22 17 / 33

Clausal Proof (LRAT Format)

ID Clause Hints

Proof that u12 ∧ u13 → u17

72 17 -13 -12 -2 0 68 48 0

73 17 -13 -12 0 72 69 44 0

c Validate unit clause for node u17

74 17 0 45 50 73 0

I Each clause identified by numerical ID
I Clause addition justified by list of hints

I For RUP clause, sequence of clauses for resolution operations

Bryant: Pragmatics of SAT 22 18 / 33

BuDDy BDD Package

I ∼12K lines of code

I Clean, robust, and well documented

I Benchmark comparisons demonstrate good performance
I Node identified by 32-bit index into table

I Rather than as 64-bit pointer

Bryant: Pragmatics of SAT 22 19 / 33

Tracking Proof Information in Tbuddy

ID Clause Hints

Defining clauses for node u17 = ITE(x2,u9,u8)

68 17 -9 -2 0 0

69 17 -8 2 0 0

70 -17 9 -2 0 -68 -69 0

71 -17 8 2 0 -68 -69 0

Proof that u12 ∧ u13 → u17

72 17 -13 -12 -2 0 68 48 0

73 17 -13 -12 0 72 69 44 0

c Validate unit clause for node u17

74 17 0 45 50 73 0

dclause

xvar

jclause

vclause

I Information tracked with nodes, cache entries, and TBDDs

Bryant: Pragmatics of SAT 22 20 / 33

BuDDy Data Structures

Node data

level, mark, rc

low

high

next

head

Cache entry

op

arg1

arg2

arg3

res

I Four byte fields

I Node table integrates node data structures + unique table
I Memory management

I Reference counting for external references
I Mark-sweep to detect internal references

Bryant: Pragmatics of SAT 22 21 / 33

Tbuddy Data Structures

Node data

level, mark, rc

low

high

next

head

xvar

dclause

Cache entry

op

arg1

arg2

arg3

res

jclause

TBDD

root

vclause

rc index

I Node entry includes extension variable, defining clause ID

I Cache entry includes justifying clause ID

I TBDDD includes root node, validating clause ID

Bryant: Pragmatics of SAT 22 22 / 33

Parity Benchmark Runtime

10 100 1,000 10,000 100,000 1,000,000
0.01

0.1

1.0

10.0

100.0

600.0

KISSAT
TBSAT, Bucket

I Bucket elimination
I Systematic way to perform conjunctions and quantifications

I Random variable ordering

I No guidance from user

Bryant: Pragmatics of SAT 22 23 / 33

Parity Benchmark Proof Complexity

10 100 1,000 10,000 100,000 1,000,000

102

103

104

105

106

107

108

109

Parity Benchmark Runtime

KISSAT
TBSAT, Bucket

I Total number of proof steps
I TBSAT with bucket elimination scales polynomially

I Checker time ≈ solver time
I Large proofs, but efficiently checkable

Bryant: Pragmatics of SAT 22 24 / 33

Integrating Parity Reasoning

Boolean
Formula

(CNF)

Parity Formula

Steps

Other clauses

UNSAT Proof
or

Validated Constraints

Parity

Extractor

Parity

Solver

Parity Step

Validation

CNF-Parity

Validation

BDD-Based
Proof Generator

I Fully automated

I UNSAT if constraints infeasible

I Otherwise, supply validated constraints to BDD-based solver

Bryant: Pragmatics of SAT 22 25 / 33

Gaussian Elimination Over GF2

Parity Constraints P = P1,P2, . . . ,Pm, each of form

xi1 ⊕ xi2 ⊕ · · · ⊕ xik = p

with phase p ∈ {0, 1}

Elimination Step

1. Choose pivot constraint Ps and variable xt such that xt ∈ Ps

2. For each j 6= s:

Pj ←
{

Pj xt 6∈ Pj

Ps ⊕ Pj , xt ∈ Pj

I Removes xt from all other constraints

3. Remove Ps from P and repeat

4. Stop with infeasible constraint 0 = 1 or have |P| = 1.

Bryant: Pragmatics of SAT 22 26 / 33

TBDD-Based Parity Reasoning Example

Goal: Compute P ′
j ←− Ps ⊕ Pj

a a

b b

c c

0 1 1 0

Ps : a⊕ c = 1 Pj : a⊕ b = 0

v̇s v̇j

Bryant: Pragmatics of SAT 22 27 / 33

TBDD-Based Parity Reasoning Example

v ′
j ←− bdd xnor(vs , vj)

a a

b b b

c c c c

0 1 1 0 0 1

Ps : a⊕ c = 1 Pj : a⊕ b = 0 P ′
j : Ps ⊕ Pj

v̇s v̇j v ′
j

Bryant: Pragmatics of SAT 22 27 / 33

TBDD-Based Parity Reasoning Example
ẇ ←− tbdd and(v̇s , v̇j)

a a a

b b b b b

c c c c c c

0 1 1 0 0 1 0 1

Ps : a⊕ c = 1 Pj : a⊕ b = 0 Pi ∧ Pj P ′
j : Ps ⊕ Pj

v̇s v̇j ẇ v ′
j

Bryant: Pragmatics of SAT 22 27 / 33

TBDD-Based Parity Reasoning Example
ẇ ←− tbdd and(v̇s , v̇j)
v̇ ′
j ←− tbdd validate(v ′

j , ẇ)

a a a

b b b b b

c c c c c c

0 1 1 0 0 1 0 1

Ps : a⊕ c = 1 Pj : a⊕ b = 0 Pi ∧ Pj P ′
j : Ps ⊕ Pj

v̇s v̇j ẇ v ′
jv̇
′
j

Bryant: Pragmatics of SAT 22 27 / 33

Parity Benchmark Runtime

10 100 1,000 10,000 100,000 1,000,000
0.01

0.1

1.0

10.0

100.0

600.0

KISSAT
TBSAT, Bucket
TBSAT, Gauss

I Upper limit: n = 699,051
I BuDDy limited to 221 − 1 BDD variables
I CNF file has 2,097,147 variables and 5,592,392 clauses
I Parity extractor finds 1,398,098 euqations

Bryant: Pragmatics of SAT 22 28 / 33

Parity Benchmark Proof Complexity

10 100 1,000 10,000 100,000 1,000,000

102

103

104

105

106

107

108

109

KISSAT
TBSAT, Bucket
TBSAT, Gauss

I Checker time ≈ solver time

Bryant: Pragmatics of SAT 22 29 / 33

Final Thoughts on SAT Solvers

CDCL is the best overall approach

I Readily generates resolution proofs

I But, very weak for parity and cardinality constraints

BDDs provide complementary strengths

I Can generate extended resolution proofs

I Very strong for parity constraints

I Some success with cardinality constraints

Future solvers should use combination of methods

I With unified proof framework

I Clausal reasoning

I Constraint reasoning

I Boolean reasoning

Bryant: Pragmatics of SAT 22 30 / 33

A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

Bryant: Pragmatics of SAT 22 31 / 33

A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

Parity Equations

Bryant: Pragmatics of SAT 22 31 / 33

A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

BDDs can help

Parity Equations

Bryant: Pragmatics of SAT 22 31 / 33

A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

BDDs can help

Parity Equations

Can we get here?

Bryant: Pragmatics of SAT 22 31 / 33

Bryant: Pragmatics of SAT 22 32 / 33

Parity Benchmark Runtime: Proof Generation Overhead

10 100 1,000 10,000 100,000 1,000,000
0.01

0.1

1.0

10.0

100.0

600.0

Bucket
Bucket, No proof
Gauss
Gauss, No proof

Bryant: Pragmatics of SAT 22 33 / 33

