$\operatorname{TBUDDY}:$ a Proof-Generating BDD Package

Randal E. Bryant

Carnegie Mellon University

August, 2022

Motivation: Parity Benchmark

- Chew and Heule, SAT 2020
- For random permtuation π :

Conjunction unsatisfiable

Motivation: Parity Benchmark Runtime

- KISSAT: State-of-the-art CDCL solver
- > 3 different seeds for each value of n
- Limited to $n \leq 42$ within 600 seconds

BDD Representation of Parity Constraints

Odd Parity

Even Parity

- Linear complexity
- Insensitive to variable order
- Potential major advantage over CDCL

Trusted Binary Decision Diagrams (TBDDs)

Motivation

- BDDs can outperform CDCL on some classes of problems
- Need to be able to generate proofs of unsatisfiability

Concept

- Generate clausal proof as BDD operations proceed
- Standalone solver, plus can incorporate into other solvers

Implementation

- Build on BUDDY BDD package
- Also support parity reasoning

Reduced Ordered Binary Decision Diagrams (BDDs)

Represent Boolean Function as Graph

- Canonical form
- Simple algorithms to construct & manipulate

Used in SAT, Model Checking,

- Bottom-up approach
 - Construct canonical representation
 - Generate solutions
- Compare to CDCL
 - Top-down approach
 - Keep branching on variables until find solution

Apply Algorithm

 $\boldsymbol{w} \leftarrow \boldsymbol{u} \odot \boldsymbol{v}$

- ► u, v, w BDD root nodes representing Boolean functions
- ▶ ⊙ binary Boolean operator

▶ E.g., \land , \lor , \ominus

Extended Resolution and BDDs

Extended Resolution

- Tseitin, 1967
- Extension variable z becomes shorthand for formula F
 - ► F: Boolean formula over input and earlier extension variables
- Add *defining* clauses
 - Encode constraint of form $z \leftrightarrow F$
- Repeated use can yield exponentially smaller proof
- Supported by DRAT proof framework

Extended Resolution and BDDs

Extended Resolution

- ► Tseitin, 1967
- Extension variable z becomes shorthand for formula F
 - ► F: Boolean formula over input and earlier extension variables
- Add *defining* clauses
 - Encode constraint of form $z \leftrightarrow F$
- Repeated use can yield exponentially smaller proof
- Supported by DRAT proof framework

Proof-Generating BDD Operations

- Biere, Sinz, Jussila, 2006
- Each node *u* has associated extension variable *u*
- Each recursive step of Apply algorithm justified as proof steps

Generating Extended Resolution Proofs

Extension variable *u* for each node *u* in BDD

• Defining clauses encode constraint $u \leftrightarrow ITE(x, u_1, u_0)$

Clause name	Formula	Clausal form
HD(u)	$x ightarrow (u ightarrow u_1)$	$\overline{x} \lor \overline{u} \lor u_1$
LD(u)	$\overline{x} \rightarrow (u \rightarrow u_0)$	$x \lor \overline{u} \lor u_0$
HU(u)	$x ightarrow (u_1 ightarrow u)$	$\overline{x} \lor \overline{u}_1 \lor u$
LU(u)	$\overline{x} \rightarrow (u_0 \rightarrow u)$	$x \vee \overline{u}_0 \vee u$

Apply Algorithm Recursion

Apply Algorithm Recursion

$$\begin{array}{c} \mathsf{Recursion} \\ \mathsf{Apply}(\boldsymbol{u}_1,\boldsymbol{v}_1,\wedge) \rightarrow \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Apply Algorithm Recursion

Bryant: Pragmatics of SAT 22

Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation

- When Apply $(\boldsymbol{u}, \boldsymbol{v}, \wedge)$ returns \boldsymbol{w} , also generate proof $\boldsymbol{u} \wedge \boldsymbol{v} \rightarrow \boldsymbol{w}$
- Key Idea: Proof based on the underlying logic of the Apply algorithm

Proof Structure

- Assume recursive calls generate proofs
 - $u_1 \wedge v_1 \rightarrow w_1$
 - ► $u_0 \land v_0 \rightarrow w_0$
- Combine with defining clauses for nodes u, v, and w

Apply Proof Structure

Defining Clauses

Clause	Formula	Clause	Formula
HD(u)	$x ightarrow (u ightarrow u_1)$	LD(u)	$\overline{x} ightarrow (u ightarrow u_0)$
HD(v)	$x ightarrow (v ightarrow v_1)$	LD(v)	$\overline{x} ightarrow (v ightarrow v_0)$
HU(w)	$x ightarrow (w_1 ightarrow w)$	LU(w)	$\overline{x} ightarrow (w_0 ightarrow w)$

Resolution Steps

$$\begin{array}{cccc} x \to (u \to u_1) & \overline{x} \to (u \to u_0) \\ x \to (v \to v_1) & \overline{x} \to (v \to v_0) \\ \hline x \to (w_1 \to w) & u_1 \wedge v_1 \to w_1 \\ \hline \hline x \to (u \wedge v \to w) & \overline{x} \to (w_0 \to w) & u_0 \wedge v_0 \to w_0 \\ \hline \hline & \overline{x} \to (u \wedge v \to w) & \overline{x} \to (u \wedge v \to w) \\ \hline & u \wedge v \to w \end{array}$$

Can express as two reverse unit propagation (RUP) proof steps

Quantification Operation

Operation EQuant(*u*, *x*)

$$\exists x f = f|_{x=0} \lor f|_{x=1}$$

- Abstract away details of satisfying solutions
- Not logically required for SAT solver
 - But, critical for obtaining good performance

Proof Generation

- Do not attempt to follow recursive structure of algorithm
- Instead, follow with separate implication proof generation
 - EQuant $(\boldsymbol{u}, x) \rightarrow \boldsymbol{w}$
 - Generate proof $u \rightarrow w$
 - Algorithm similar to proof-generating Apply operation

Trusted BDDs (TBDDs)

Components of TBDD \dot{u}

- BDD with root node **u**.
- Associated extension variable u
- ▶ Proof step for unit clause [*u*]

Interpretation. For input formula ϕ :

►
$$\phi \models u$$

Any variable assignment that satisfies \u03c6 must yield 1 for BDD with root u

TBDD API

tbdd tbdd_from_clause_id(int i);

- Create TBDD representation \dot{u}_i of input clause C_i
 - Add proof step for $C_i \vDash u_i$

tbdd tbdd_and(tbdd \dot{u} , tbdd \dot{v});

Form conjunction \dot{w} of TBDDs \dot{u} and \dot{v} .

- Apply operation generates proof $u \land v \to w$
- ▶ Resolution with unit clauses [*u*] and [*v*] yields unit clause [*w*]

tbdd tbdd_validate(bdd \boldsymbol{v} , tbdd $\dot{\boldsymbol{u}}$);

- Upgrade BDD v to TBDD v
 - Apply operation generates proof $u \rightarrow v$
 - Resolution with unit clause [u] yields unit clause [v]

TBDD Execution Example

 $\dot{\boldsymbol{u}}_1 \longleftarrow \texttt{tbdd_from_clause}(C_1)$ $\dot{\boldsymbol{u}}_2 \longleftarrow \texttt{tbdd_from_clause}(C_2)$

TBDD Execution Example $\dot{u}_3 \leftarrow \text{tbdd}_\text{and}(\dot{u}_1, \dot{u}_2)$

TBDD Execution Example

 $u_4 \leftarrow bdd_exists(u_3, a)$

TBDD Execution Example

$$u_4 \longleftarrow \texttt{bdd_exists}(u_3, a)$$

 $\dot{u}_4 \longleftarrow \texttt{tbdd_validate}(u_4, \dot{u}_3)$

Clausal Proof (LRAT Format)

ID	Clause	Hints		
Defining clauses for node $u_{17} = ITE(x_2, u_9, u_8)$				
68	17 -9 -2 0	0		
69	17 -8 2 0	0		
70	-17 9 -2 0	-68 -69 0		
71	-17 8 2 0	-68 -69 0		

- Variables denoted by signed integers
 - $\blacktriangleright x_i \rightarrow i$
 - $\blacktriangleright \overline{x}_i \rightarrow -i$
- Each clause identified by numerical ID
- Clause addition justified by list of hints
 - For defining clause, list of clauses for which extension variable has opposite polarity

Clausal Proof (LRAT Format)

ID	Clause	Hints		
Proof that $oldsymbol{u}_{12} \wedge oldsymbol{u}_{13} o oldsymbol{u}_{17}$				
72	17 -13 -12 -2 0	68 48 0		
73	17 -13 -12 0	72 69 44 0		
c Validate unit clause for node $oldsymbol{u}_{17}$				
74	17 0	45 50 73 0		

- Each clause identified by numerical ID
- Clause addition justified by list of hints
 - ▶ For RUP clause, sequence of clauses for resolution operations

BUDDY BDD Package

BuDDy: Binary Decision Diagram package Release 2.2

Jørn Lind-Nielsen IT-University of Copenhagen (ITU) e-mail: buddy@itu.dk November 9, 2002

- \blacktriangleright ~12K lines of code
- Clean, robust, and well documented
- Benchmark comparisons demonstrate good performance
- Node identified by 32-bit index into table
 - Rather than as 64-bit pointer

Tracking Proof Information in TBUDDY

Information tracked with nodes, cache entries, and TBDDs

BuDDy Data Structures

- Four byte fields
- ▶ Node table integrates node data structures + unique table
- Memory management
 - Reference counting for external references
 - Mark-sweep to detect internal references

TBUDDY Data Structures

- Node entry includes extension variable, defining clause ID
- Cache entry includes justifying clause ID
- TBDDD includes root node, validating clause ID

Parity Benchmark Runtime

- Bucket elimination
 - Systematic way to perform conjunctions and quantifications
- Random variable ordering
- No guidance from user

Parity Benchmark Proof Complexity

Parity Benchmark Runtime

- Total number of proof steps
- TBSAT with bucket elimination scales polynomially
 - Checker time \approx solver time
 - Large proofs, but efficiently checkable

Bryant: Pragmatics of SAT 22

Integrating Parity Reasoning

- Fully automated
- UNSAT if constraints infeasible
- Otherwise, supply validated constraints to BDD-based solver

Gaussian Elimination Over GF2

Parity Constraints $\mathcal{P} = P_1, P_2, \dots, P_m$, each of form

 $x_{i_1} \oplus x_{i_2} \oplus \cdots \oplus x_{i_k} = p$

with phase $p \in \{0, 1\}$

Elimination Step

- 1. Choose pivot constraint P_s and variable x_t such that $x_t \in P_s$
- 2. For each $j \neq s$:

$$P_j \leftarrow \begin{cases} P_j & x_t \notin P_j \\ P_s \oplus P_j, & x_t \in P_j \end{cases}$$

Removes x_t from all other constraints

- **3**. Remove P_s from \mathcal{P} and repeat
- 4. Stop with infeasible constraint 0 = 1 or have $|\mathcal{P}| = 1$.

TBDD-Based Parity Reasoning Example

Goal: Compute $P'_i \leftarrow P_s \oplus P_j$

TBDD-Based Parity Reasoning Example

 $\mathbf{v}'_j \longleftarrow \texttt{bdd_xnor}(\mathbf{v}_s, \mathbf{v}_j)$

TBDD-Based Parity Reasoning Example $\dot{w} \leftarrow \text{tbdd}_\text{and}(\dot{v}_s, \dot{v}_j)$

27 / 33

TBDD-Based Parity Reasoning Example

$$\dot{oldsymbol{w}} \longleftarrow \texttt{tbdd}_\texttt{and}(\dot{oldsymbol{v}}_{s},\,\dot{oldsymbol{v}}_{j})\ \dot{oldsymbol{v}}_{j}' \longleftarrow \texttt{tbdd}_\texttt{validate}(oldsymbol{v}_{j}',\,\dot{oldsymbol{w}})$$

Parity Benchmark Runtime

▶ Upper limit: *n* = 699,051

- ▶ BuDDy limited to 2²¹ − 1 BDD variables
- CNF file has 2,097,147 variables and 5,592,392 clauses
- Parity extractor finds 1,398,098 euqations

Parity Benchmark Proof Complexity

• Checker time \approx solver time

Final Thoughts on SAT Solvers

CDCL is the best overall approach

- Readily generates resolution proofs
- But, very weak for parity and cardinality constraints

BDDs provide complementary strengths

- Can generate extended resolution proofs
- Very strong for parity constraints
- Some success with cardinality constraints

Future solvers should use combination of methods

- With unified proof framework
- Clausal reasoning
- Constraint reasoning
- Boolean reasoning

Bryant: Pragmatics of SAT 22

Parity Benchmark Runtime: Proof Generation Overhead

