Tbuddy: a Proof-Generating BDD Package

Randal E. Bryant
Carnegie Mellon
University

August, 2022

Motivation: Parity Benchmark

- Chew and Heule, SAT 2020
- For random permtuation π :

$$
\begin{array}{cccccccccc}
x_{1} & \oplus & x_{2} & \oplus & \cdots & \oplus & x_{n} & = & 1 & \text { Odd parity } \\
x_{\pi(1)} & \oplus & x_{\pi(2)} & \oplus & \cdots & \oplus & x_{\pi(n)} & = & 0 & \text { Even parity }
\end{array}
$$

- Conjunction unsatisfiable

Motivation: Parity Benchmark Runtime

- KISSAT: State-of-the-art CDCL solver
- 3 different seeds for each value of n
- Limited to $n \leq 42$ within 600 seconds

BDD Representation of Parity Constraints

Odd Parity

Even Parity

- Linear complexity
- Insensitive to variable order
- Potential major advantage over CDCL

Trusted Binary Decision Diagrams (TBDDs)

Motivation

- BDDs can outperform CDCL on some classes of problems
- Need to be able to generate proofs of unsatisfiability

Concept

- Generate clausal proof as BDD operations proceed
- Standalone solver, plus can incorporate into other solvers

Implementation

- Build on BuDDy BDD package
- Also support parity reasoning

Reduced Ordered Binary Decision Diagrams (BDDs)

Represent Boolean Function as Graph

- Canonical form
- Simple algorithms to construct \& manipulate

Used in SAT, Model Checking, ...

- Bottom-up approach
- Construct canonical representation
- Generate solutions
- Compare to CDCL
- Top-down approach

- Keep branching on variables until find solution

Apply Algorithm

- $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ BDD root nodes representing

Extended Resolution and BDDs

Extended Resolution

- Tseitin, 1967
- Extension variable z becomes shorthand for formula F
- F: Boolean formula over input and earlier extension variables
- Add defining clauses
- Encode constraint of form $z \leftrightarrow F$
- Repeated use can yield exponentially smaller proof
- Supported by DRAT proof framework

Extended Resolution and BDDs

Extended Resolution

- Tseitin, 1967
- Extension variable z becomes shorthand for formula F
- F: Boolean formula over input and earlier extension variables
- Add defining clauses
- Encode constraint of form $z \leftrightarrow F$
- Repeated use can yield exponentially smaller proof
- Supported by DRAT proof framework

Proof-Generating BDD Operations

- Biere, Sinz, Jussila, 2006
- Each node \boldsymbol{u} has associated extension variable u
- Each recursive step of Apply algorithm justified as proof steps

Generating Extended Resolution Proofs

- Extension variable u for each node \boldsymbol{u} in BDD

- Defining clauses encode constraint $u \leftrightarrow \operatorname{ITE}\left(x, u_{1}, u_{0}\right)$

Clause name	Formula	Clausal form
$\operatorname{HD}(\boldsymbol{u})$	$x \rightarrow\left(u \rightarrow u_{1}\right)$	$\bar{x} \vee \bar{u} \vee u_{1}$
$\operatorname{LD}(\boldsymbol{u})$	$\bar{x} \rightarrow\left(u \rightarrow u_{0}\right)$	$x \vee \bar{u} \vee u_{0}$
$\operatorname{HU}(\boldsymbol{u})$	$x \rightarrow\left(u_{1} \rightarrow u\right)$	$\bar{x} \vee \bar{u}_{1} \vee u$
$\operatorname{LU}(\boldsymbol{u})$	$\bar{x} \rightarrow\left(u_{0} \rightarrow u\right)$	$x \vee \bar{u}_{0} \vee u$

Apply Algorithm Recursion

Apply Algorithm Recursion

Recursion
$\operatorname{Apply}\left(\boldsymbol{u}_{1}, \boldsymbol{v}_{1}, \wedge\right) \rightarrow$

$\operatorname{Apply}\left(\boldsymbol{u}_{0}, \boldsymbol{v}_{0}, \wedge\right) \rightarrow$

Apply Algorithm Recursion

Recursion

Result

Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation

- When $\operatorname{Apply}(\boldsymbol{u}, \boldsymbol{v}, \wedge)$ returns \boldsymbol{w}, also generate proof $u \wedge v \rightarrow w$
- Key Idea: Proof based on the underlying logic of the Apply algorithm

Proof Structure

- Assume recursive calls generate proofs
- $u_{1} \wedge v_{1} \rightarrow w_{1}$
- $u_{0} \wedge v_{0} \rightarrow w_{0}$
- Combine with defining clauses for nodes $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w}

Apply Proof Structure

Defining Clauses

Clause	Formula	Clause	Formula
$\mathrm{HD}(\mathrm{u})$	$x \rightarrow\left(u \rightarrow u_{1}\right)$	$\mathrm{LD}(\mathrm{u})$	$\bar{x} \rightarrow\left(u \rightarrow u_{0}\right)$
$\mathrm{HD}(\mathrm{v})$	$x \rightarrow\left(v \rightarrow v_{1}\right)$	$\mathrm{LD}(\mathrm{v})$	$\bar{x} \rightarrow\left(v \rightarrow v_{0}\right)$
$\mathrm{HU}(\mathrm{w})$	$x \rightarrow\left(w_{1} \rightarrow w\right)$	$\mathrm{LU}(\mathrm{w})$	$\bar{x} \rightarrow\left(w_{0} \rightarrow w\right)$

Resolution Steps

$x \rightarrow\left(u \rightarrow u_{1}\right)$	$\bar{x} \rightarrow\left(u \rightarrow u_{0}\right)$
$x \rightarrow\left(v \rightarrow v_{1}\right)$	$\bar{x} \rightarrow\left(v \rightarrow v_{0}\right)$
$x \rightarrow\left(w_{1} \rightarrow w\right) \quad u_{1} \wedge v_{1} \rightarrow w_{1}$	
	$\bar{x} \rightarrow\left(w_{0} \rightarrow w\right) \quad u_{0} \wedge v_{0} \rightarrow w_{0}$
	$\bar{x}(u \wedge v \rightarrow w)$
$u \wedge v \rightarrow w$	$\bar{x} \rightarrow(u \wedge v \rightarrow w)$

Can express as two reverse unit propagation (RUP) proof steps

Quantification Operation

Operation EQuant (\boldsymbol{u}, x)

$$
\exists x f=\left.\left.f\right|_{x=0} \vee f\right|_{x=1}
$$

- Abstract away details of satisfying solutions
- Not logically required for SAT solver
- But, critical for obtaining good performance

Proof Generation

- Do not attempt to follow recursive structure of algorithm
- Instead, follow with separate implication proof generation
- EQuant $(\boldsymbol{u}, x) \rightarrow \boldsymbol{w}$
- Generate proof $u \rightarrow w$
- Algorithm similar to proof-generating Apply operation

Trusted BDDs (TBDDs)

Components of TBDD \dot{u}

- BDD with root node \boldsymbol{u}.
- Associated extension variable u
- Proof step for unit clause [u]

Interpretation. For input formula ϕ :

- $\phi \vDash u$
- Any variable assignment that satisfies ϕ must yield 1 for BDD with root \boldsymbol{u}

TBDD API

tbdd tbdd_from_clause_id(int i);

- Create TBDD representation $\dot{\boldsymbol{u}}_{i}$ of input clause C_{i}
- Add proof step for $C_{i} \vDash u_{i}$
tbdd tbdd_and(tbdd $\dot{\boldsymbol{u}}$, tbdd $\dot{\boldsymbol{v}}$);
- Form conjunction $\dot{\boldsymbol{w}}$ of TBDDs $\dot{\boldsymbol{u}}$ and $\dot{\boldsymbol{v}}$.
- Apply operation generates proof $u \wedge v \rightarrow w$
- Resolution with unit clauses [u] and [v] yields unit clause [w]
tbdd tbdd_validate(bdd \boldsymbol{v}, tbdd $\dot{\boldsymbol{u}}$);
- Upgrade BDD v to TBDD \dot{v}
- Apply operation generates proof $u \rightarrow v$
- Resolution with unit clause [u] yields unit clause [v]

TBDD Execution Example

```
\(\dot{\boldsymbol{u}}_{1} \longleftarrow\) tbdd_from_clause \(\left(C_{1}\right)\)
\(\dot{\boldsymbol{u}}_{2} \longleftarrow\) tbdd_from_clause \(\left(C_{2}\right)\)
```


TBDD Execution Example

 $\dot{\boldsymbol{u}}_{3} \longleftarrow$ tbdd_and $\left(\dot{\boldsymbol{u}}_{1}, \dot{\boldsymbol{u}}_{2}\right)$

TBDD Execution Example

$\boldsymbol{u}_{4} \longleftarrow$ bdd_exists $\left(\boldsymbol{u}_{3}, a\right)$

TBDD Execution Example

$\boldsymbol{u}_{4} \longleftarrow$ bdd_exists $\left(\boldsymbol{u}_{3}, a\right)$
$\dot{\boldsymbol{u}}_{4} \longleftarrow$ tbdd_validate $\left(\boldsymbol{u}_{4}, \dot{\boldsymbol{u}}_{3}\right)$

Clausal Proof (LRAT Format)

| ID | Clause | | | Hints | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Defining clauses for node $\boldsymbol{u}_{17}=\operatorname{ITE}\left(x_{2}, \boldsymbol{u}_{9}, \boldsymbol{u}_{8}\right)$ | | | | | | | |
| 68 | 17 | -9 | -2 | 0 | 0 | | |
| 69 | 17 | -8 | 2 | 0 | 0 | | |
| 70 | -17 | 9 | -2 | 0 | -68 | -69 | 0 |
| 71 | -17 | 8 | 2 | 0 | -68 | -69 | 0 |

- Variables denoted by signed integers
- $x_{i} \rightarrow \quad i$
- $\bar{x}_{i} \rightarrow-i$
- Each clause identified by numerical ID
- Clause addition justified by list of hints
- For defining clause, list of clauses for which extension variable has opposite polarity

Clausal Proof (LRAT Format)

ID	Clause	Hints
Proof that $\boldsymbol{u}_{12} \wedge \boldsymbol{u}_{13} \rightarrow \boldsymbol{u}_{17}$		
72	$17-13-12-20$	6848
	$17-13-120$	726944
c Validate unit clause for node \boldsymbol{u}_{17}		
74	170	455073

- Each clause identified by numerical ID
- Clause addition justified by list of hints
- For RUP clause, sequence of clauses for resolution operations

BuDDy BDD Package

BuDDy: Binary Decision Diagram package
Release 2.2
Jørn Lind-Nielsen
IT-University of Copenhagen (ITU)
e-mail: buddy@itu.dk
November 9, 2002

- ~12K lines of code
- Clean, robust, and well documented
- Benchmark comparisons demonstrate good performance
- Node identified by 32-bit index into table
- Rather than as 64-bit pointer

Tracking Proof Information in TBuddy

- Information tracked with nodes, cache entries, and TBDDs

BuDDy Data Structures

Node data
level, mark, rc

low
high
next
head

- Four byte fields
- Node table integrates node data structures + unique table
- Memory management
- Reference counting for external references
- Mark-sweep to detect internal references

Tbuddy Data Structures

Node data

level, mark, rc
low
high
next
head
xvar
dclause

Cache entry
op
$\arg 1$
$\arg 2$
$\arg 3$
res
jclause

- Node entry includes extension variable, defining clause ID
- Cache entry includes justifying clause ID
- TBDDD includes root node, validating clause ID

Parity Benchmark Runtime

- Bucket elimination
- Systematic way to perform conjunctions and quantifications
- Random variable ordering
- No guidance from user

Parity Benchmark Proof Complexity

Parity Benchmark Runtime

- Total number of proof steps
- TBSAT with bucket elimination scales polynomially
- Checker time \approx solver time
- Large proofs, but efficiently checkable

Integrating Parity Reasoning

- Fully automated
- UNSAT if constraints infeasible
- Otherwise, supply validated constraints to BDD-based solver

Gaussian Elimination Over GF2

Parity Constraints $\mathcal{P}=P_{1}, P_{2}, \ldots, P_{m}$, each of form

$$
x_{i_{1}} \oplus x_{i_{2}} \oplus \cdots \oplus x_{i_{k}}=p
$$

with phase $p \in\{0,1\}$

Elimination Step

1. Choose pivot constraint P_{s} and variable x_{t} such that $x_{t} \in P_{s}$
2. For each $j \neq s$:

$$
P_{j} \leftarrow \begin{cases}P_{j} & x_{t} \notin P_{j} \\ P_{s} \oplus P_{j}, & x_{t} \in P_{j}\end{cases}
$$

- Removes x_{t} from all other constraints

3. Remove P_{s} from \mathcal{P} and repeat
4. Stop with infeasible constraint $0=1$ or have $|\mathcal{P}|=1$.

TBDD-Based Parity Reasoning Example

Goal: Compute $P_{j}^{\prime} \longleftarrow P_{s} \oplus P_{j}$

TBDD-Based Parity Reasoning Example

$$
\boldsymbol{v}_{j}^{\prime} \longleftarrow \text { bdd_xnor }\left(\boldsymbol{v}_{s}, \boldsymbol{v}_{j}\right)
$$

TBDD-Based Parity Reasoning Example

 $\dot{\boldsymbol{w}} \longleftarrow$ tbdd_and $\left(\dot{\boldsymbol{v}}_{s}, \dot{\boldsymbol{v}}_{j}\right)$

TBDD-Based Parity Reasoning Example

 $\dot{\boldsymbol{w}} \longleftarrow$ tbdd_and $\left(\dot{\boldsymbol{v}}_{s}, \dot{\boldsymbol{v}}_{j}\right)$$\dot{\boldsymbol{v}}_{j}^{\prime} \longleftarrow$ tbdd_validate $\left(\boldsymbol{v}_{j}^{\prime}, \dot{\boldsymbol{w}}\right)$

Parity Benchmark Runtime

- Upper limit: $n=699,051$
- BuDDy limited to $2^{21}-1$ BDD variables
- CNF file has 2,097,147 variables and 5,592,392 clauses
- Parity extractor finds $1,398,098$ euqations

Parity Benchmark Proof Complexity

- Checker time \approx solver time

Final Thoughts on SAT Solvers

CDCL is the best overall approach

- Readily generates resolution proofs
- But, very weak for parity and cardinality constraints

BDDs provide complementary strengths

- Can generate extended resolution proofs
- Very strong for parity constraints
- Some success with cardinality constraints

Future solvers should use combination of methods

- With unified proof framework
- Clausal reasoning
- Constraint reasoning
- Boolean reasoning

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

Hard		Can we get here? O
	Math proofs NP-hard probs	
Mathematical Tractability		
		BDDs can help
Easy		Parity Equations -
	asy CDCL T	ctability Hard

Parity Benchmark Runtime: Proof Generation Overhead

