
DPS: A Framework for
Deterministic Parallel SAT Solvers

Hidetomo Nabeshima1, Tsubasa Fukiage1, Yuto Obitsu1,
Xaio-Nan Lu1, Katsumi Inoue2

1 University of Yamanashi, Japan
{nabesima, xnlu}@yamanashi.ac.jp

2 National Institute of Informatics, Japan
inoue@nii.ac.jp

Introduction

 SAT solvers are powerful tools for problem solving
- Hardware and software verification, Planning, Scheduling, etc.

 Performance improvement is important for applications

 Sequential SAT solving
- Studying high-performance sequential SAT solvers is essential
- Basis of the SAT-based problem solving

 Parallel SAT solving
- With the spread of multi-core environments,

important to utilize their computing resources

2

Non-deterministic Behavior in Parallel SAT Solvers

3

Results of PaInleSS-MapleCOMSPS, winner of the parallel track of the 2021 SAT competition,
for 1200 instances from SAT Race 2019, SAT Competition 2020, and 2021

Issues of Non-deterministic Behavior

 When model checking, different bugs may be found in different runs
 In scheduling problem, even if a good solution is found, it may not be

reproduced next time
 If a bug occurs in software with an embedded non-deterministic SAT solver, the

bug may not be reproduced
 In the development of parallel SAT solvers, instability of execution results leads

to difficulty in tuning performance

4

Reproducibility is an important property
that directly affects the usability of SAT solvers

Cause of Non-deterministic Behavior

 Timing of sending clauses is determined by the sender
- Affected by system workload, cache misses, and/or communication delays

 Since each worker's search process is affected by the imported
clauses, the behavior may change from run to run

5

Asynchronous clause exchange between workers

1st run

Worker1

Worker2

2nd run

Worker1

Worker2

Deterministic Parallel SAT Solvers
 ManySAT 2.0 [Hamadi+, 2011]

- First deterministic parallel SAT solver
- All workers synchronize periodically, then exchange clauses in a fixed order

 MergeSat [Manthey, 2021]
- Recently supports deterministic parallel solving
- Similar mechanism as ManySAT

 ManyGlucose [Nabeshima+, 2020]
- Deterministic parallel SAT solver with delayed clause exchange to suppress

synchronous waiting
- 3rd place in the parallel track of the SAT Competition 2020

• Y. Hamadi, S. Jabbour, C. Piette, L. Sais: Deterministic Parallel DPLL, JSAT 7(4): 127-132 (2011)
• N. Manthey: The MergeSat Solver, SAT-2021:387-398 (2021)
• H. Nabeshima, K. Inoue: Reproducible Efficient Parallel SAT Solving, SAT-2020:123-138 (2020)

6

ManySAT 2.0
Y. Hamadi, S. Jabbour, C. Piette, L. Sais: Deterministic Parallel DPLL, JSAT 7(4): 127-132 (2011)

 Pros
- Easily implemented with OpenMP

 Cons
- Waiting time increases as workers increases

7

41%

Worker1 1 2 3 4 5

Worker2 1 2 3 4 5

Period 1 Period 2 Period 3 Period 4 Period 5

Results of 64 threads

ManyGlucose
H. Nabeshima, K. Inoue: Reproducible Efficient Parallel SAT Solving, SAT-2020, pp.123-138

Delayed Clause Exchange
 Exchanges clauses acquired in period 𝑥𝑥 at the end of period 𝑥𝑥 + 𝑚𝑚 (margin)

8

Worker1 1 2 3 4 5

Worker2 1 2 3 4 5

Worker1 1 2 3 4 5

Worker2 1 2 3 4 5

𝒎𝒎 = 𝟏𝟏

𝒎𝒎 = 𝟎𝟎
same as

ManySAT

No idle time is required If period difference between workers ≤ 𝒎𝒎
However, the received clauses are always 𝒎𝒎 periods old

41%

22%

Waiting Time Reduction by DCE

 Pros
- DCE can reduce waiting time

 Cons
- Requires expertise in concurrent programming
- More effort than building non-deterministic parallel SAT solvers

9

Purpose

 A framework for easily constructing efficient deterministic parallel
SAT solvers

10

Parallel Solver Framework

Non-deterministic PaInleSS [Frioux+, 2017]

Deterministic This work

- PaInleSS is a framework to parallelize existing sequential SAT solvers with little
effort, but does not support reproducible behavior

PaInleSS = PArallel INstantiabLE SAT Solver
L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon: Painless: a Framework for Parallel SAT Solving, SAT-2017, pp.233-250

 Parallelize existing sequential SAT solvers with little effort
- Provides adapter classes to incorporate popular SAT solvers

 Provides representative strategies
- Parallelization

• Portfolio, divide and conquer, and hybrid strategies of them

- Clause exchange
• Length, LBD and HordeSAT [Balyo+, 2015] based strategies

• HordeSAT strategy shares 1500 literals every second

 PaInleSS with MapleCOMSPS
- 1st in SAT Competition 2021, 2020 and 2018
- Portfolio parallel SAT solver with HordeSAT strategy

11

PaInleSS supports building fast parallel SAT solvers
without expertise in concurrent programming

DPS Overview

12

SAT Solver

Memory
access countWorker 𝑖𝑖

Period Manager

Period 1 Period 2 Period 3

Exp DB Exp DB Exp DB

Orange modules are provided by our framework DPS
Blue functions denote required modifications of solver

SAT Solver

Memory
access countWorker 𝑗𝑗

Period Manager

Period 1 Period 2 Period 3

Exp DB Exp DB Exp DB

Modifications to embed SAT solver

13

Memory
access

Check
new period

Export
learnts

Import
learnts

SAT solver

Wrapper

Abstract
wrapper

Load
formula

Get
model

Start/stop
solving

Translator Translator Translator Translator

Period Manager DB selector Temp DB

Other
workers

Exp DB Exp DB Exp DB

Additional modifications for reproducible behavior

Orange modules are provided by our framework DPS
Blue functions denote required modifications of solver

Counting Memory Accesses

 Keeping the run time of each worker's period as close as possible
- Define the length of period as elapsed time?

• Measurement error
• Amount of processing within a given time may change

 Period length is defined by memory access count
- Corresponding to what Knuth calls “mems”
- Reproducible measure

14

Counting in MiniSAT family

15

namespace DPS {
extern thread_local uint64_t num_mem_accesses;

}

class Clause {
⋮

Lit& operator [](int i) { DPS::num_mem_accesses++; return data[i].lit; }
Lit operator [](int i) const { DPS::num_mem_accesses++; return data[i].lit; }
operator const Lit* (void) const { DPS::num_mem_accesses++; return (Lit*)data; }
float& activity () { DPS::num_mem_accesses++; return data[header.size].act; }
uint32_t abstraction() const { DPS::num_mem_accesses++; return data[header.size].abs; }

⋮
};

 MiniSAT family of solvers has Clause class
 Sufficient to count literal accesses within the class

• Thread-specific global variable since C++11
• Each worker (thread) has this counter accessible only by itself

Counting in Kissat
A. Biere, K. Fazekas, M. Fleury, and M. Heisinger. CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the

SAT competition 2020, SAT Competition 2020 Solver Description

 A clause is defined as a C struct
 Not easy to count literal accesses since members of struct are public

 Kissat already has a mechanism to measure memory access count
called “ticks”
- Refinement of Knuth’s “mems” and counts cache line accesses
- Used to switch between various strategies and was also introduced to

ensure reproducible behavior

 Relatively easy to incorporate Kissat into DPS by using ticks

16

Support of Non-deterministic Run

17

Worker1

Worker2

DPS
(𝒎𝒎 = 𝟎𝟎)

1 4 5 6 7

1 2 3 4 5

2 3

6 7

Worker1

Worker2

DPS
(𝒎𝒎 = 𝟏𝟏)

1 4 5 6 7

1 2 3 4 5

2 3

6 7

Worker1 1 4 5 6 7

Worker2 1 2 3 4 5

NPS
(𝒎𝒎 = 𝟎𝟎)

2 3

6 7

No modifications are required to base solver for NPS

Implementation

 DPS is written in C++ and consists of about 3000 lines
- https://github.com/nabesima/DPS-pos2022/

 MiniSAT, Glucose, MapleCOMSPS
- Wrapper class and modification to base solver took about 300 lines

 Kissat
- About 800 lines including interface between C++ and C

18

Solver Diversity strategy Sharing strategy

DPS-MiniSAT
Random decision until 1st conflict

Length ≤ 10

DPS-Glucose Glue, or LBD ≤ 7 and length ≤ 24

DPS-MCOMSPS Random decision until 1st conflict
Four decision heuristics used in P-MCOMSPS

150 literals per period
DPS-Kissat Random decision until 1st conflict

Half of workers disable elimination technique

Diversity is more important for the deterministic parallel SAT solvers

https://github.com/nabesima/DPS-pos2022/

Experimental Evaluation

19

 Setting : Margin of DCE is 20, 64 threads, 5000 sec / instance
 Instances : 1200 instances from SAT Race 2019, SAT Competition 2020 and 2021
 Environment : Cray XC40 (supercomputer system A in Kyoto University)

Intel Xeon Phi KNL (1.4GHz, 68 cores), 96GB memory
 All experimental results (including additional results) are available at

https://nabesima.github.io/DPS-pos2022/

Base SAT solvers
Existing parallel solvers Proposed parallel solvers

Det Non-Det Det Non-Det

MiniSAT ManySAT - DPS-MiniSAT NPS-MiniSAT

Glucose ManyGlucose-lit
ManyGlucose-blk Glucose-syrup DPS-Glucose NPS-Glucose

MapleCOMSPS - Painless-MCOMSPS
1st parallel track 2021

DPS-MCOMSPS NPS-MCOMSPS

Kissat
1st main track 2020

- - DPS-Kissat
DPS-Kissat-no-exchange

NPS-Kissat
NPS-Kissat-no-exchange

https://nabesima.github.io/DPS-pos2022/

Comparison of PaInleSS and NPS/DPS

20

Solver
of solved instances

PAR-2
2019 2020 2021 Total

PaInleSS-
MCOMSPS

156 + 107 118 + 124 134 + 166 805 (408 + 397) 4604576

152 + 105 115 + 123 131 + 168 794 (398 + 396) 4697998

155 + 107 107 + 124 134 + 167 794 (396 + 398) 4707163

NPS-MCOMSPS

160 + 105 135 + 123 139 + 168 830 (434 + 396) 4386010

159 + 104 140 + 121 137 + 168 829 (436 + 393) 4352294

163 + 105 126 + 122 138 + 167 821 (427 + 394) 4451212

DPS-MCOMSPS 156 + 101 129 + 119 137 + 166 808 (422 + 386) 4636427

 NPS shows comparable on UNSAT but superior on SAT compared to PaInleSS
- Random decisions and clause exchange strategies may have influenced
- Capable of building efficient non-deterministic parallel solvers

 DPS also shows comparable performance to PaInleSS
- Difference between NPS and DPS represents the cost of ensuring reproducible behavior

NPS-Kissat vs DPS-Kissat

21

Solver
of solved instances

PAR-2
2019 2020 2021 Total

NPS-Kissat

175 + 114 178 + 134 154 + 168 923 (507 + 416) 3245708

173 + 114 175 + 134 155 + 168 919 (503 + 416) 3266045

170 + 115 175 + 134 155 + 168 917 (500 + 417) 3296766

NPS-Kissat
no exchange 171 + 69 173 + 100 152 + 128 793 (496 + 297) 4646767

DPS-Kissat

168 + 112 170 + 130 157 + 167 904 (495 + 409) 3451073

168 + 112 170 + 130 157 + 167 904 (495 + 409) 3451074

168 + 112 170 + 130 157 + 167 904 (495 + 409) 3451445

DPS-Kissat
no-exchange 168 + 64 168 + 95 150 + 115 760 (486 + 274) 4924475

 NPS-Kissat can solve 100 more instances than PaInleSS-MCOMSPS
 Clause exchange is essential for solving UNSAT efficiently, and a bit effective for SAT

CDF Plots

 Kissat is a SAT solver that has shown significant performance gains in SAT instances,
which is also evident in parallelization

22

SAT instances UNSAT instances

Waiting Time Ratio

 DCE can reduce waiting time
 Complex diversity strategies produce variations in period execution times, making it

difficult to reduce latency
23

Solver Waiting Time

ManySAT 41.1%

ManyGlucose-lit 21.7%

DPS-MiniSAT 10.4%

DPS-Glucose 9.9%

DPS-MCOMSPS 12.4%

DPS-Kissat 15.0%

Conclusion

 Reproducible behavior will facilitate the application of parallel solvers in
practical fields and promote research in parallel SAT solving

 DPS makes it easy to build efficient deterministic parallel SAT solvers
 NPS can achieve higher performance if performance is important

24

Future Work

 Extending DPS to non-shared-memory environment
 Efficient clause exchange between heterogeneous solvers with various

strategies

25

Thank you for your attention

Comparison of DPS and NPS

 NPS execution time (especially for SAT instances) varies widely
 DPS has reproducible behavior (all points on the diagonal)
 NPS can solve more instances than DPS

26

NPS DPSNPS vs DPS

	DPS: A Framework for�Deterministic Parallel SAT Solvers
	Introduction
	Non-deterministic Behavior in Parallel SAT Solvers
	Issues of Non-deterministic Behavior
	Cause of Non-deterministic Behavior
	Deterministic Parallel SAT Solvers
	ManySAT 2.0�Y. Hamadi, S. Jabbour, C. Piette, L. Sais: Deterministic Parallel DPLL, JSAT 7(4): 127-132 (2011)
	ManyGlucose�H. Nabeshima, K. Inoue: Reproducible Efficient Parallel SAT Solving, SAT-2020, pp.123-138
	Waiting Time Reduction by DCE
	Purpose
	PaInleSS = PArallel INstantiabLE SAT Solver�L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon: Painless: a Framework for Parallel SAT Solving, SAT-2017, pp.233-250
	DPS Overview
	Modifications to embed SAT solver
	Counting Memory Accesses
	Counting in MiniSAT family
	Counting in Kissat�A. Biere, K. Fazekas, M. Fleury, and M. Heisinger. CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT competition 2020, SAT Competition 2020 Solver Description
	Support of Non-deterministic Run
	Implementation
	Experimental Evaluation
	Comparison of PaInleSS and NPS/DPS
	NPS-Kissat vs DPS-Kissat
	CDF Plots
	Waiting Time Ratio
	Conclusion
	スライド番号 25
	Comparison of DPS and NPS
	Exchanging Time Ratio
	Waiting Time Reduction by DCE
	ManyGlucose-blk

