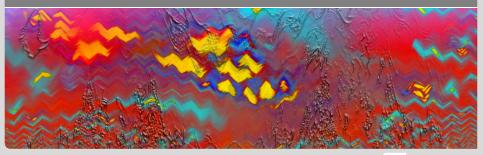


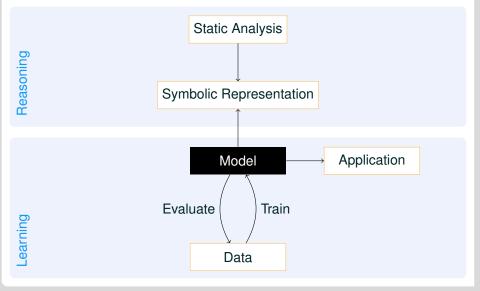
Calculating Sufficient Reasons for Random Forest Classifiers

Algorithm Engineering · Institute of Theoretical Informatics

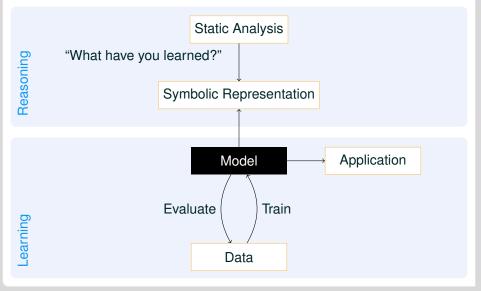


www.kit.edu

Reasoning about Learned Models



Reasoning about Learned Models



Outline

Prime Implicants of CNF Encoding of Random Forest Classifiers

Contributions

- Monotonic CNF encoding for random forest classifiers
- Implementation for sklearn.ensemble.RandomForestClassifier
- Incremental method to generate all prime implicants
- First initial results
- · Plenty of ideas for future work (paper is WIP)

Decision Tree Classifiers

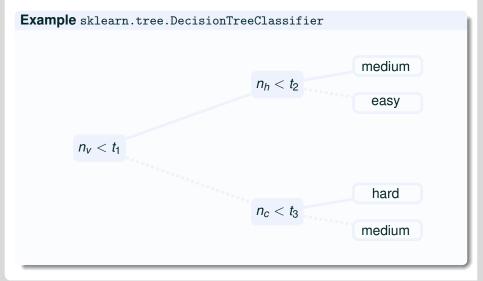
SamplesClassesGround-truth $T \subset \mathbb{R}^n$ K $G \subset T \to K$

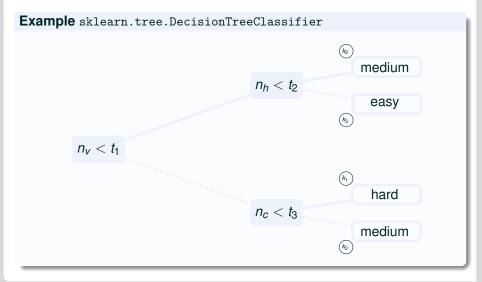
Classification Problem

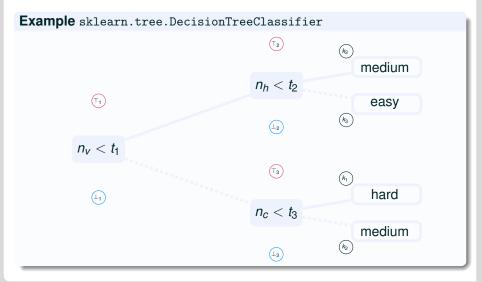
Devise a prediction function $c : \mathbb{R}^n \to K$ maximizing the cardinality of correctly classified samples

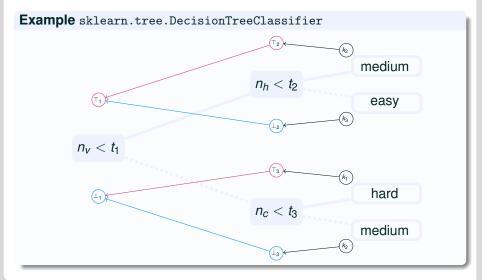
Decision Tree Classifier

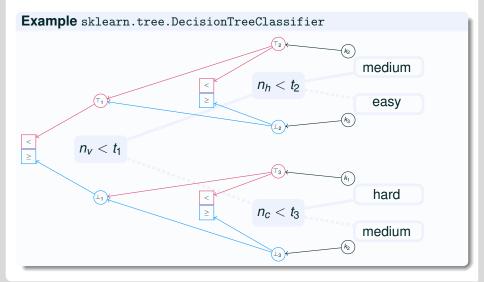
A decision tree $\mathcal{D} = (V, E, f, t)$ is a *binary tree* (V, E) with features $f: V \to \{1, 2, ..., n\}$ and thresholds $t: V \to \mathbb{R}$











Encoding Feature Constraints

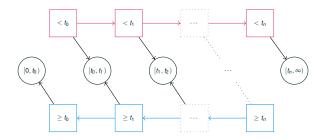
Multiple thresholds per feature

- per feature collect thresholds and sort: $t_0 < t_1 < \cdots < t_n$
- one Boolean variable per interval (induced by thresholds)
- $\mathcal{O}(n)$ encoding variables and clauses, only one clause per node
- without encoding variables: quadratic growth

Encoding Feature Constraints

Multiple thresholds per feature

- per feature collect thresholds and sort: $t_0 < t_1 < \cdots < t_n$
- one Boolean variable per interval (induced by thresholds)
- $\mathcal{O}(n)$ encoding variables and clauses, only one clause per node
- · without encoding variables: quadratic growth



Properties of the Encoding

Observations

- 2-SAT
- Horn
- Monotonic Circuit:
 - Classes are roots
 - Feature Intervals are leafs
 - Leafs are purely positive
- Select a class by adding a unit-clause of the class variable, or select multiple classes by adding a disjunction of class variables

Random Forest Classifiers

SamplesClassesGround-truth $T \subset \mathbb{R}^n$ K $G \subset T \to K$

Classification Problem

Devise a prediction function $c : \mathbb{R}^n \to K$ maximizing the cardinality of correctly classified samples

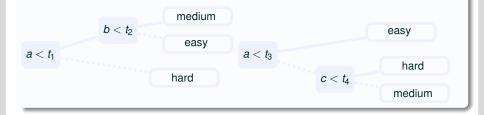
Random Forest Classifier

A random forest $\mathcal{R}^d = \{(T_i, \mathcal{D}_i) \mid 1 \le i \le d\}$ combines a set of *d* decision trees. Each decision tree \mathcal{D}_i is independently trained on randomly selected subsets of the training samples $T_i \subset T$

CNF Encoding Random Forest Classifiers

Example sklearn.ensemble.RandomForestClassifier

- each leaf ℓ has class probabilities $p_{\ell}(\text{easy})$, $p_{\ell}(\text{medium})$, $p_{\ell}(\text{hard})$
- · each sample belongs to exactly one leaf in each of the trees
- class is determined by $\underset{k \in \{\text{eas.,med.,h.}\}}{\arg \max} \sum_{\ell \in L} p_{\ell}(k)$

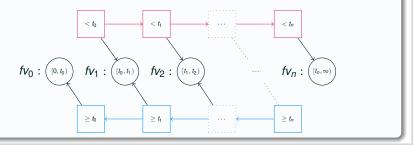


Encoding an Auxiliary SAT Instance

Number of leaf combinations exponential in number of trees, but not all leaf combinations are *possible*.

Generate possible leaf combinations

- · Encoding all decision trees as described
- For each feature *f* add constraint: $\neg fv_0 \lor \neg fv_1 \lor \cdots \lor \neg fv_n$
- · Generate all solutions, projected to leaf variables



Final Encoding of Random Forest Classifiers

- · Encoding all decision trees as described
- Determine class κ(M) ∈ K for each model M of the auxiliary SAT instance (each solution is a *possible* leaf combination)
- $S_k := \{M \mid \kappa(M) = k\}$

Monolithic Approach

For each class
$$k \in K$$
, encode $k \to \bigvee_{M \in S_k} \bigwedge_{m \in M} m$

Incremental Approach

Incrementally build formula equisatisfiable to $k \to \bigvee_{M \in S_k} \bigwedge_{m \in M} m$

- add models in S_k one by one and solve
- needs additional encoding variables and use of an assumption literal

Determine all Prime Implicants of Classifier

Given a formula *F*, a model $P \models F$ is a prime implicant of *F* iff it is subset minimal, i.e., $\nexists P' \subset P, P' \models F$.

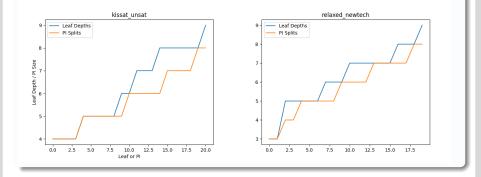
Prime Implicants of our Random Forest Encoding

- Minimal number of excluded value intervals for selected class(es)
- NOT minimal number of case-distinctions for selected class(es)
- · Largest connected feature subspaces for selected class(es)

Results: Decision Tree (SC 2020 Data)

Predict fastest solver in {kissat-unsat, relaxed-newtech} from 56 features, Accuracy: 79%

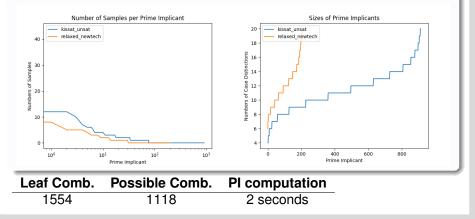
Numbers of Case Distinctions: Leaf Depths vs. Prime Implicants



Results: Random Forest, 2 Trees (SC 2020 Data)

Predict fastest solver in {kissat-unsat, relaxed-newtech} from 56 features, Accuracy: 74%

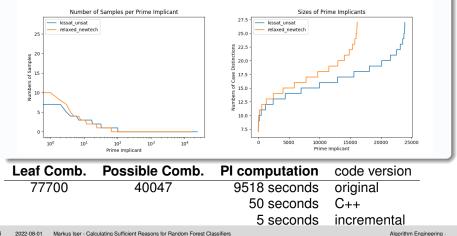
Prime Implicant: Numbers of Samples (left) Sizes (right)



Results: Random Forest, 3 Trees (SC 2020 Data)

Accuracy: 79%

Numbers of Samples



14

Institute of Theoretical Informatics

Future Work

Parallelize and Approximate

- · Parallel and incremental enumeration of possible leaf combinations
- · Determine leaf combinations which are backed by samples
- Analyze evolution of prime implicants while adding leaf combinations
- Analyze evolution of accuracy through generalization

Empirical Classes of SAT Instances

- · Analyze prediction models for algorithm portfolios
- · Feedback for algorithm engineers
- · Recurrent ISAC-like approach without unsupervised learning