Towards an Efficient CNF Encoding of Block Ciphers (work in progress)

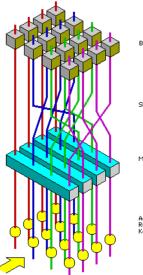
Konstanty Junosza-Szaniawski¹ Daniel Waszkiewicz^{1,2}

Warsaw University of Technology, Warsaw, Poland

National Institute of Telecommunications, Warsaw, Poland

Pragmatics of SAT, 2022

SAT and Block Ciphers



Byte Sub

Shift Row

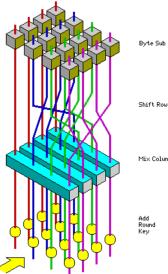
Mi× Column

Add Round Key

э

< □ > < □ > < □ > < □ > < □ > < □ >

SAT and Block Ciphers



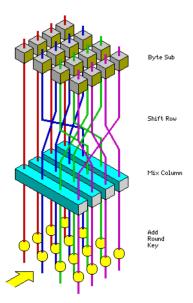
Mi× Column

 Minimal differential path, number of *active* s-boxes

 Counting keys with fix points, $\#k, \exists p \ Enc(p, k) = p.$

 Algebraic/logical cryptanalysis, Given p, c, find k that Enc(p, k) = c.

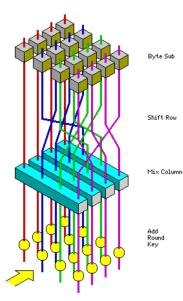
SAT and Block Ciphers



- Minimal differential path, number of *active* s-boxes.
 Only one formula for each problem and block cipher.
- Counting keys with fix points, #k,∃p Enc(p,k) = p.
 Only one formula for each problem and block cipher.

 Algebraic/logical cryptanalysis, Given p, c, find k that Enc(p, k) = c.
 One formula for each block cipher's private key.

Small Scale AES



- We consider 3 rounds of Small Scale AES with 4 bit s-box, 4 rows and 4 columns.
- 64 bits of private key.
- The nonlinear function, s-box, is given as a look-up table:

[6, B, 5, 4, 2, E, 7, A, 9, D, F, C, 3, 1, 0, 8]

• The linear mapping is an 4×4 MDS matrix in $GF(2^4)$, which we represent as 16×16 matrix over GF(2).

$$B = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}.$$

$$\begin{aligned} x_0 \oplus x_2 \oplus x_3 &= y_0, \\ x_0 \oplus x_1 \oplus x_2 &= y_1, \\ x_0 \oplus x_1 \oplus x_2 \oplus x_3 &= y_2, \\ x_1 \oplus x_2 \oplus x_3 &= y_3. \end{aligned}$$

With cutting number equal to 3:

 $x_0 \oplus x_2 = e_0, \ e_0 \oplus x_3 = y_0,$ $x_0 \oplus x_1 = e_1, \ e_1 \oplus x_2 = y_1,$ $e_1 \oplus x_2 = e_2, \ e_2 \oplus x_3 = y_2,$ $x_1 \oplus x_2 = e_3, \ e_3 \oplus x_3 = y_3.$

Observation: resulting system is linear straight-line program.

Konstanty Junosza-Szaniawski, Daniel WaszlTowards an Efficient CNF Encoding of Block Pragmatics of SAT, 2022

• = •

Straight-line program

 $x_0 \oplus x_2 = e_0, e_0 \oplus x_3 = y_0,$ $x_0 \oplus x_1 = e_1, e_1 \oplus x_2 = y_1,$ $e_1 \oplus x_2 = e_2, e_2 \oplus x_3 = y_2,$ $x_1 \oplus x_2 = e_3, e_3 \oplus x_3 = y_3.$

Linear straight-line program (SLP) computing $A \cdot [x_1, \ldots, x_n]^T = [y_1, \ldots, y_m]^T$ are *lines*:

• each line of shape $v = \delta u \oplus \lambda w$ and $\delta, \lambda \in GF(2)$, u, v, w variables

- x_1, \ldots, x_n input variables
- y_1, \ldots, y_m output variables

Length of SLP is number of its lines.

Finding minimal SLP for given matrix A is NP-Hard.

- Record the frequency for all possible pairs of form x_i ⊕ x_j occurring in the matrix.
- The pair with the highest frequency is replaced by a new variable.
- Procedure continues until all remaining pairs occur at most once in the matrix. Then gates are computed naively.

$$B = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}, \qquad \qquad \begin{array}{c} x_0 \oplus x_2 = a_0, \ a_0 \oplus x_3 = y_0, \\ a_0 \oplus x_1 = y_1, \\ x_3 \oplus y_1 = y_2, \\ x_1 \oplus x_3 = a_1, \ a_1 \oplus x_2 = y_3. \end{array}$$

$$B = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}.$$

$$x_0 \oplus x_1 = a_0, a_0 \oplus x_2 = y_1,$$

$$x_3 \oplus y_1 = y_2,$$

$$x_1 \oplus y_2 = y_0,$$

$$x_0 \oplus y_2 = y_3.$$

The BP algorithm:

- AES matrix from 152 naively to 97 XOR operations (the best 92, improved tie heuristics).
- Khazad matrix from 1232 naively to 507 XOR operations.
- Small Scale AES matrix from 72 naively to 47 XOR operations.

We consider SLP resulting from Paar's algorithm for $[A|I_n]$ input matrix. The Naive approach is greedy algorithm with cutting number equal to 4.

Nonlinear function, ANF

- $S: \{0,1\}^4 \to \{0,1\}^4$
- Forward (FW):
 - one boolean function for each output in ANF,
 - $y_i = S_i(x_0, x_1, x_2, x_3).$
- Multivariate Quadratic (MQ):
 - 21 polynomial equations of degree 2 in ANF,
 - minimal degree annihilators of characteristic function, $\chi(x_0, x_1, x_2, x_3, S(x_0), S(x_1), S(x_2), S(x_3))$
 - theoretically good for Groebner basis, XL, ElimLin algorithms.
 - Similar encodings: Sparse MQ, Groebner bases, Bosphorus (BS)*

CNF encoding	FW	MQ			BS
nr of variables	29	84			8
nr of clauses	150	596			35

Nonlinear function, symbolic execution

- $S: \{0,1\}^4 \to \{0,1\}^4$
- Cryptol (CRY):
 - Cryptol impl as look-up table + SAW (Software Analysis Workbench) to And-Inverter Graph,
 - easy-to-use, 5 lines Cryptol+SAW,
 - smaller than AIGs from Yosys and Quartus.
- functionally reduced AIG (FRAIG):
 - reduce AIGs from Cryptol with ABC.
- Similar encodings: Yosys, Quartus, CBMC

CNF encoding	FW	MQ	CRY	FRAIG		BS
nr of variables	29	84	42	40		8
nr of clauses	150	596	114	108		35

Nonlinear function, propagation complete

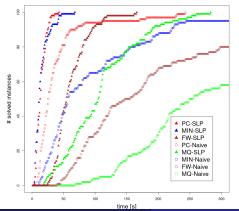
- $S: \{0,1\}^4 \to \{0,1\}^4$
- Propagation complete (PC):
 - using Optic for minimal propagation complete encoding,
 - FW equations as input,
 - theoretically good for CDCL algorithm.
- Minimal (MIN):
 - using Optic for arbitrary minimal,
 - FW equations as input,
- Similar encodings: genpce

CNF encoding	FW	MQ	CRY	FRAIG	MIN	PC	BS
nr of variables	29	84	42	40	8	8	8
nr of clauses	150	596	114	108	22	66	35

Results

Tests for AES-3444 with 10 pairs plaintext-ciphertext. 100 CNFs for each encoding.

SAT-solver: plingeling with 20 threads. No timeout.



Encoding	∦ var.	# cl.	μ time[s]
MIN-SLP	8848	32712	14.683
MIN-Naive	7248	43912	85.040
PC-SLP	8848	54360	14.282
PC-Naive	7248	65560	39.065
FW-SLP	19180	95688	61.481
FW-Naive	17580	106888	164.701
MQ-SLP	46240	315120	109.459
MQ-Naive	44640	326320	283.046

Konstanty Junosza-Szaniawski, Daniel WaszlTowards an Efficient CNF Encoding of Block

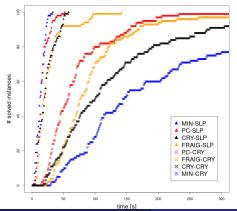
Pragmatics of SAT, 2022

11/16

Results

Tests for AES-3444 with 10 pairs plaintext-ciphertext. 100 CNFs for each encoding.

SAT-solver: plingeling with 20 threads. No timeout.

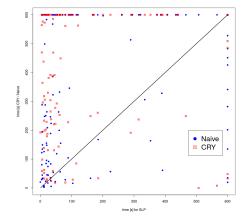


Encoding	₩ var.	# cl.	μ time[s
MIN-SLP	8848	32712	13.62
MIN-CRY	24848	79672	229.47
PC-SLP	8848	54360	16.09
PC-CRY	24848	101320	73.43
FRAIG-SLP	24592	75024	26.34
FRAIG-CRY	40592	121984	97.83
CRY-SLP	25576	77976	22.23
CRY-CRY	41576	124936	134.01

Pragmatics of SAT, 2022

12/16

Results for AES-3424, 30 random MDSs, timeout 600



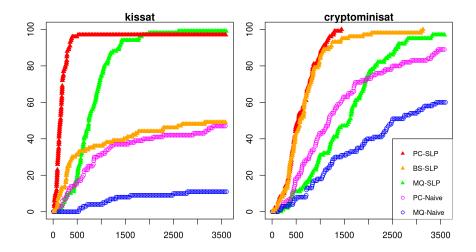
Encoding	nr of solved	total time [s]	PAR-2
SLP	108	36680.5	61880.5
Naive	76	57739.1	102139.1
CRY	67	66210.2	116010.2

Konstanty Junosza-Szaniawski, Daniel WaszlTowards an Efficient CNF Encoding of Block

• XOR Local Search for Boolean Brent Equations

- cnf2xnf + xnfsat: no solution for AES-2444 in 3600 seconds.
- maybe s-boxes are hard for SLS?
- idea: cnf2xnf \rightarrow SLP on XOR \rightarrow xnf2cnf ?
- Single thread SAT-solverss (next slide)
- Bosphorus encoding (next slide)

Tests for single thread solvers



15/16

- S-box: PC with 2x-4x speed-up,
- Linear mapping: SLP with 3x-5x speed up,
- Combination PC-SLP 20x faster than default SageMath MQ-Naive.
- Ongoing work:
 - Minimal encoding of linear XOR system. For matrix A, the inverse A⁻¹ is not straight-line program, but could be good encoding.
 - Given matrix A over GF(2), and $I \in N$. Find minimal d, that matrices
 - B,C exists and $A|\widetilde{\mathbf{0}\ldots\mathbf{0}} = B \cdot C$ and $||B||_{max} \leq I$.
 - NP-Hard.