
MatSat: a matrix-based
differentiable SAT solver

Taisuke Sato(NII) Ryosuke Kojima(Kyoto univ.)

• S = { a v b v ~c, a v ~b }

Matricized 3-SAT

min1(Qud) = min1() =
2
2

1
1

C1 is true

C2 is true
S is satisfiable

u =
1
0
0

:a
:b
:c

ud =
u

~u~u =
0
1
1

C1 C2

1

0

min1

1

min1(x)=min(x,1)

1 1 0 0 0 1
1 0 0 0 1 0

a b c ~a ~b ~c

Q = :C1
:C2

Q1 Q2

feed-forward NN

v
Q

u =
1
0
0

v = min1(Qud)
= min1((Q1-Q2)u+Q11)

out = (1 • (1-v))<1

out = 1

(a•b) = Σi aibi

• Jsat = (1 • (1-min1(Qud))) + ℓ ∥ u⨀(1−u) ∥2

• Jsat= 0 1 = min1(Qud) & u is 0-1 vector
Qud ≥ 1 & u is 0-1 vector
every clause has at least one true literal
S is satisfied by u

All solutions are captured as a root of Jsat

SAT solving by minimizing Jsat

(u⨀(1-u))i = ui(1-ui) #false clauseu: real vector

• Jacobian Ja
sat of Jsat

• 𝜕𝜕Jsat/𝜕𝜕up = (1 • (-[c<1]⨀((Q1-Q2)Ip))) +2ℓ ((u⨀(1-u)⨀(1-2u)) • Ip)
= ((- (Q1-Q2)T[c<1] + 2ℓ (u⨀(1-u)⨀(1-2u)) • Ip)

where Ip = [0..1..0]T, c = Qud, [c<1]p = 1 if cp<1, else = 0
• Ja

sat = - (Q1-Q2)T[c<1] + 2ℓ(u⨀(1-u)⨀(1-2u)) ≈cubic polynomials

• Iterate (and binarize u as a solution) until Jsat = 0

u = u - αJa
sat = u + αQ1

T[c<1] - αQ2
T[c<1] + ⋯ O(mn)

• up is increased∝ |clauses falsified by u having positive literal p|
• up is decreased∝ |clauses falsified by u having negative literal ~p|

Backpropagation for Jsat

MatSat
• MatSat: differentiable SAT solver based on matrix

• neither CDCL nor SLS but NN
• finds satisfying assignments in a vector space by minimizing

a cost function Jsat to zero (by Newton’s method)
• incomplete, cannot solve unsat problems
• scalable by multi-threads, GPU parallel SAT solver
• some similarity to LP approach and SDP approach to MAX 2-

SAT in continuous relaxation but much simpler and direct

• MatSat is a new type of SAT solver

MatSat algorithm

thresholding

perturbation

• Random 3-SAT (|var| = n, |clause| = 4.26*n)

MatSat_sp: Scalability

MatSat_sp (OpenMP) on PC with Intel Core i7-10700 CPU@2.90GHz, 16-threads
max_try = 100, max_itr = 1000, 5 trials on each instance (all error = 0)

n 10000 20000 40000 60000 80000 100000

#instance 5 5 5 5 5 5

0

10

20

30

40

50

60

70

80

90

100

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

11
00

00

12
00

00

13
00

00

14
00

00

15
00

00

16
00

00

17
00

00

18
00

00

19
00

00

20
00

00

21
00

00

22
00

00

23
00

00

24
00

00

25
00

00

26
00

00

27
00

00

28
00

00

29
00

00

30
00

00

Sparrow2Riss-2018 MatSat-GPU

MatSat-GPU: Large scale

|variable| = num. of variables
|clause|/|variable| = 4.26 fixed
Ave. time measured with ±σ over 10 trials with different seed
under the setting max_itr = 1000, max_try = 100
* 7 trials not converged in the whole trials

|variable|

tim
e(

se
c)

GPU: GeForce® GTX 1080 Ti
secialized implementation
for C+GPU (CUDA)

CDCL

SLS

timeout=5000s

Comparison with SAT solvers
Random SAT

Set-A: 500 3-SAT instances generated as uniform random SAT
Set-B: /rnd-barthel (http://sat2018.forsyte.tuwien.ac.at/benchmarks/Random.zip)
Set-C: /Balint (http://sat2018.forsyte.tuwien.ac.at/benchmarks/Random.zip)

SAT Competition 2018
Random SAT Track: learning time(s)

Set-B
rnd-barthel

3-SAT (55 inst)

Set-C
Balint

5-SAT (10 inst)

Set-H
rnd-qhid

3-SAT (55 inst)

Set-I
rnd-komb

3-SAT (55 inst)

time(s)/inst. time/inst. timout
(5000s) time(s)/inst. timout

(200s) time(s)/inst. timeout
(200s)

MatSat_sp 18.8 697.7 0/10 59.6 12/55 193.6 51/55

max_(itr try) (500 100) (2k 5k) (1k 100) (2k 100k)

S2R 2.3 1544.1 3/10 127.7 42/55 1.0 0/55

probSAT 0.39 2134.8 2/10 156.3 43/55 172.8 47/55

YalSAT 0.34 1018.6 1/10 156.3 43/55 178.1 50/55

CCAnr11 0.48 937.6 0/10 777.9 38/55 55.0 8/55

http://sat2018.forsyte.tuwien.ac.at/benchmarks/Random.zip

Non-random SAT(Set-{D,E})

CDCL

SLS

Set-D Set-E Set-F

k-SAT 3-SAT (100 inst) 5-SAT (100 inst) 5-SAT (20 inst)

(n m) (90 300) (500 3100) (320 1120)

timeout=5000s

Set-D: SATLIB_FlatGraph/Flat30-60 (https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html)
Set-E: SATLIB_MorphGraph/SW100-8-0 (https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html)
Set-F: SAT2018_benchmark_Main_cnf/Jingchao_Chen (http://sat2018.forsyte.tuwien.ac.at/benchmarks/index.html)

Weighted variables and clauses
• MatSat performs poorly on non-random SAT
• Introduce variable weight w(v) and clause weight w(c) to simulate

prioritized optimization of variables (just like unit propagation)

w(v) = (num. of variable v’s occ. in the SAT instance)/(ave. var. weight)
wv = [w(v1) ⋯ w(vn)]T

w(c) = sum of variable weights in a clause c
wc = [w(c1) … w(cm)]T

• Define weighted Jsat-w and compute Jacobian Ja
sat-w as

Jsat-w = (1 • wc⨀(1-min1(Qud))) + ℓ ∥ wv⨀u⨀(1−u) ∥2

Ja
sat-w = - (Q1-Q2)T[wc⨀(Qud ≤1)] + 2ℓ(wv⨀wv⨀ u⨀(1-u)⨀(1-2u))

Weighted MatSat: learning time(s)

• The weighted version runs much faster (as far as Set-{D,E,G} concerned)

Set-G: SATLIB MorphGraph/sw100-8-lp1-c5 (https://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html)

MatSat_sp Set-D
3-SAT (100 inst)

Set-E
5-SAT (100 inst)

Set-G
5-SAT (100 inst)

non-weighted 9.29
(500 100)

679.7
(2k 100)

1277.3
(5k 100)max_(itr try)

weighted 2.18
(100 300)

82.4
(1k 100)

123.7
(200 100)max_(itr try)

Conclusion
• MatSat is a new type of SAT solver based on matrix

– solution search by cost minimization in a vector space
– NN with a single layer for logical operations
– seems competitive w.r.t. random SAT
– declarative, simple and scalable (by many-cores and GPUs)
– under development for improvement

• variable, clause weight, dynamic weighting
• ℓ1 norm, activating function etc

• Structured problems are hard  future challenge
• Extending to weighted MAX-SAT is straightforward

Jmax-sat = (w • (1-min1(Qud))) + ⋯

	MatSat: a matrix-based differentiable SAT solver
	Matricized 3-SAT
	SAT solving by minimizing Jsat
	Backpropagation for Jsat
	MatSat
	スライド番号 6
	MatSat_sp: Scalability
	MatSat-GPU: Large scale
	スライド番号 9
	SAT Competition 2018�Random SAT Track: learning time(s)
	スライド番号 11
	Weighted variables and clauses
	Weighted MatSat: learning time(s)
	スライド番号 14

