
A Study of Divide and Distribute Fixed Weights
and its Variants

Cayden R. Codel and Marijn J. H. Heule

Based on the PoS submission found at
http://crcodel.com/research/ddfw_pos.pdf and the larger research
thesis found at http://crcodel.com/research/ddfw_thesis.pdf.

Cayden Codel 1 / 16

http://crcodel.com/research/ddfw_pos.pdf
http://crcodel.com/research/ddfw_thesis.pdf


Introduction

We studied the Divide and Distribute Fixed Weights (ddfw)
stochastic local search algorithm

ddfw finds satisfying assignments by minimizing unsatisfied
clause weight

In local minima, ddfw distributes weight from satisfied to
unsatisfied clauses

We studied how to best flip variables and distribute weight by
testing ddfw against modern hard benchmarks

Cayden Codel 2 / 16



Introduction

We studied the Divide and Distribute Fixed Weights (ddfw)
stochastic local search algorithm

ddfw finds satisfying assignments by minimizing unsatisfied
clause weight

In local minima, ddfw distributes weight from satisfied to
unsatisfied clauses

We studied how to best flip variables and distribute weight by
testing ddfw against modern hard benchmarks

Cayden Codel 2 / 16



Introduction

We studied the Divide and Distribute Fixed Weights (ddfw)
stochastic local search algorithm

ddfw finds satisfying assignments by minimizing unsatisfied
clause weight

In local minima, ddfw distributes weight from satisfied to
unsatisfied clauses

We studied how to best flip variables and distribute weight by
testing ddfw against modern hard benchmarks

Cayden Codel 2 / 16



Introduction

We studied the Divide and Distribute Fixed Weights (ddfw)
stochastic local search algorithm

ddfw finds satisfying assignments by minimizing unsatisfied
clause weight

In local minima, ddfw distributes weight from satisfied to
unsatisfied clauses

We studied how to best flip variables and distribute weight by
testing ddfw against modern hard benchmarks

Cayden Codel 2 / 16



The DDFW algorithm

Variable flip variants

Weight redistribution variants

Cayden Codel 3 / 16



The ddfw algorithm

All clauses receive an initial weight (winit[= 8])

ddfw flips variables which most reduce the unsatsfied clause
weight (WU)

In local minima, ddfw moves weight from one satisfied
neighbor to each unsatisfied clause

ddfw is the only SLS algorithm in the UBCSAT framework to
efficiently solve the n = 7824 Pythagorean triples instance

Cayden Codel 4 / 16



The ddfw algorithm

All clauses receive an initial weight (winit[= 8])

ddfw flips variables which most reduce the unsatsfied clause
weight (WU)

In local minima, ddfw moves weight from one satisfied
neighbor to each unsatisfied clause

ddfw is the only SLS algorithm in the UBCSAT framework to
efficiently solve the n = 7824 Pythagorean triples instance

Cayden Codel 4 / 16



The ddfw algorithm

All clauses receive an initial weight (winit[= 8])

ddfw flips variables which most reduce the unsatsfied clause
weight (WU)

In local minima, ddfw moves weight from one satisfied
neighbor to each unsatisfied clause

ddfw is the only SLS algorithm in the UBCSAT framework to
efficiently solve the n = 7824 Pythagorean triples instance

Cayden Codel 4 / 16



The ddfw algorithm

All clauses receive an initial weight (winit[= 8])

ddfw flips variables which most reduce the unsatsfied clause
weight (WU)

In local minima, ddfw moves weight from one satisfied
neighbor to each unsatisfied clause

ddfw is the only SLS algorithm in the UBCSAT framework to
efficiently solve the n = 7824 Pythagorean triples instance

Cayden Codel 4 / 16



The ddfw algorithm as pseudocode

Algorithm 1: ddfw

1 Input: CNF formula F
2 Set all clause weights to winit = 8
3 α← randomly generated truth assignment
4 for MAX-FLIPS times do
5 if assignment α satisfies F then return α
6 if flipping a variable reduces WU then
7 Flip a literal that reduces WU the most
8 else
9 for each unsatisfied clause Cj do
10 Ck ← maximum-weight neighbor of Cj
11 if weight of Ck > winit then
12 Transfer a weight of 2 from Ck to Cj
13 else
14 Transfer a weight of 1 from Ck to Cj
15 return “No satisfying assignment”

Cayden Codel 5 / 16



The ddfw algorithm as pseudocode

Algorithm 2: ddfw

1 Input: CNF formula F
2 Set all clause weights to winit = 8
3 α← randomly generated truth assignment
4 for MAX-FLIPS times do
5 if assignment α satisfies F then return α
6 if flipping a variable reduces WU then
7 Flip a literal that reduces WU the most ←
8 else
9 for each unsatisfied clause Cj do
10 Ck ← maximum-weight neighbor of Cj
11 if weight of Ck > winit then
12 Transfer a weight of 2 from Ck to Cj ←
13 else
14 Transfer a weight of 1 from Ck to Cj ←
15 return “No satisfying assignment”

Cayden Codel 6 / 16



Benchmark set

Ten encodings of matrix multiplication challenges

Ten random 3-SAT instances from the 2018 SAT Competition

Two encodings of the n = 7824 Pythagorean triples problem

Two encodings of asias and three of Steiner triple problems

All CNFs can be found at
https://github.com/marijnheule/benchmarks and
http://satcompetition.org

Cayden Codel 7 / 16

https://github.com/marijnheule/benchmarks
http://satcompetition.org


The DDFW algorithm

Variable flip variants

Weight redistribution variants

Cayden Codel 8 / 16



Variable flip variants

ddfw greedily flips variables which reduce WU the most

Idea: flip WU-reducing variables probabilistically

We investigated a uniform and a weighted probability
distribution

Cayden Codel 9 / 16



Variable flip variants

ddfw greedily flips variables which reduce WU the most

Idea: flip WU-reducing variables probabilistically

We investigated a uniform and a weighted probability
distribution

Cayden Codel 9 / 16



Variable flip variants

ddfw greedily flips variables which reduce WU the most

Idea: flip WU-reducing variables probabilistically

We investigated a uniform and a weighted probability
distribution

Cayden Codel 9 / 16



Variable flip variant experimental results

0 0.5 1 1.5 2
·106

102

103

104

Flips

L
ow

es
t
n
u
m

u
n
sa
t
cl
au
se
s Greedy

Proportional
Uniform

Averaged over all problem instances. The greedy (original)
method performed significantly better than the variants.

Cayden Codel 10 / 16



The DDFW algorithm

Variable flip variants

Weight redistribution variants

Cayden Codel 11 / 16



Weight redistribution variants

ddfw distributes 1 or 2 units of weight between clauses

We can generalize to a linear rule:

Algorithm 3: Linear weight transfer rule

1 if weight of unsat neighbor Ck > winit then
2 Transfer a weight of a> × w(Ck) + c> from Ck to Cj
3 else
4 Transfer a weight of a≤ × w(Ck) + c≤ from Ck to Cj

Cayden Codel 12 / 16



Weight redistribution variants

ddfw distributes 1 or 2 units of weight between clauses

We can generalize to a linear rule:

Algorithm 4: Linear weight transfer rule

1 if weight of unsat neighbor Ck > winit then
2 Transfer a weight of a> × w(Ck) + c> from Ck to Cj
3 else
4 Transfer a weight of a≤ × w(Ck) + c≤ from Ck to Cj

Cayden Codel 12 / 16



Weight redistribution variants experimental results

winit = 100. Results averaged over all instances and 100 runs
per instance, five million flip timeout

Distribution policy Avg lowest unsat Solve %

Original ddfw 36.57 0.85
(c>, c≤) = (10, 25) 29.16 1.7

(a>, a≤) = (0.05, 0.05) 23.82 2.96
(a>, c>) = (a≤, c≤) = (0.1, 5) 22.05 2.67

Linear rule performed about 40% better

Cayden Codel 13 / 16



Weight redistribution variants experimental results

Parameter searches across the matrix multiplication challenges

20

40

20
40

50

60

c>
c≤

A
ve
ra
ge

m
in

un
sa
t

0.2

0.4

0.2

0.4

60

a>a≤

A
ve
ra
ge

m
in

un
sa
t

Note greater effect of a> on shape of right plot, while c≤
determines shape of left plot

Cayden Codel 14 / 16



Weight redistribution variants continued

Can also distribute weight from entire neighborhoods

Two methods tested: apply linear rule to each clause or to
clause proportional to clause weight

Experimental results disappointing but show some promise

Distribution policy Avg lowest unsat Matrix lowest unsat

Original ddfw 36.57 57.02
Proportional 46.91 27.0

Direct 45.29 33.91

Cayden Codel 15 / 16



Weight redistribution variants continued

Can also distribute weight from entire neighborhoods

Two methods tested: apply linear rule to each clause or to
clause proportional to clause weight

Experimental results disappointing but show some promise

Distribution policy Avg lowest unsat Matrix lowest unsat

Original ddfw 36.57 57.02
Proportional 46.91 27.0

Direct 45.29 33.91

Cayden Codel 15 / 16



Weight redistribution variants continued

Can also distribute weight from entire neighborhoods

Two methods tested: apply linear rule to each clause or to
clause proportional to clause weight

Experimental results disappointing but show some promise

Distribution policy Avg lowest unsat Matrix lowest unsat

Original ddfw 36.57 57.02
Proportional 46.91 27.0

Direct 45.29 33.91

Cayden Codel 15 / 16



Conclusions and future work

A simple generalization of the weight distribution method for
ddfw yields up to 40% improvement

More complex weight transfer rules may be more effective than
a linear one

Spreading weight across more clauses in a neighborhood could
cause ddfw to escape local minima faster

Cayden Codel 16 / 16



Conclusions and future work

A simple generalization of the weight distribution method for
ddfw yields up to 40% improvement

More complex weight transfer rules may be more effective than
a linear one

Spreading weight across more clauses in a neighborhood could
cause ddfw to escape local minima faster

Cayden Codel 16 / 16



Conclusions and future work

A simple generalization of the weight distribution method for
ddfw yields up to 40% improvement

More complex weight transfer rules may be more effective than
a linear one

Spreading weight across more clauses in a neighborhood could
cause ddfw to escape local minima faster

Cayden Codel 16 / 16


	The DDFW algorithm
	Variable flip variants
	Weight redistribution variants

