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What are ILPs and PBOs ?

▶ ILP: minimization problem with integer, binary, and
continuous variables

Linear objective and constraints

▶ PBO: ILP with binary variables

Can be solved using ILP solvers such as CPLEX
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Solving PBOs using ILP solvers

▶ Advantages

Deal with objective function
Integrality gap for hard problems

▶ Disadvantages

Poor scaling upon distribution [Ralphs, T., Shinano, Y.,
Berthold, T., Koch, T.(2018)]
Dependency on pseudo-cost updates from other parts of the
search tree
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Motivation and Goals

▶ Incorporate SAT/PBO branching heuristics into CPLEX

Only use properties of the node being branched (compare to
pseudo-Cost branching)
Quality must be comparable to CPLEX strong branching (best
available for ILPs)

▶ But SAT/PBO branching heuristics are not designed to
handle the objective function !

Modify the popular Maximal Occurance in Minimal Size
heuristic (MOMS)
Proposed heuristics can also be used in existing PBO solvers
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Use case

▶ Less-than-truckload freight routing

▶ Commercially important (Multi-Billon dollar industry for
companies like FedEX, UPS, Canada Post)

▶ Real data from an industry partner

▶ ILP has many constraints with 2 variables (Boolean
Constraint Propagation, BCP)
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Recall: 2 types of Branching

▶ Estimate based

Frequency of occurrence in constraints or the objective
coefficient ( SAT/PBO)
Pseudo cost estimates (ILP)

▶ Look ahead based

BCP for SAT/PBO
Strong branching (ILP), but it is known that probing has a role
to play in branching

▶ First few branching decisions are vitally important ! (for both
SAT and ILP) [Heule, M. J., Kullmann, O., Wieringa, S., &
Biere, A. (2011, December).]
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Frequency based branching heuristic: MOHP
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Maximal occurrence in Highest Priority

▶ Recall: MOMS heuristic quickly gets rid of large volumes of
infeasible space

High branching priority to variables in the smaller size
constraints

▶ In the presence of an objective function, we change the
priority definition that MOMS uses

quickly get rid of infeasible vertices which have very low
objective function values
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No Goods (PBO to SAT)

▶ We convert constraints into no-goods

x1+ x2 >=1 converts to the nogood {(x1=0), (x2=0)} [Eén,
N., & Sörensson, N. (2006).]
A nogood is unit hypercube in n-dimensional space every
vertex of which is infeasible

▶ Then we assign a priority to each no-good

REMEMBER: we want to get rid of the best unconstrained
vertex (if its infeasible), PLUS
also get rid of infeasible vertices in the vicinity that have low
objective values

11 / 21



No Goods (PBO to SAT)

▶ We convert constraints into no-goods

x1+ x2 >=1 converts to the nogood {(x1=0), (x2=0)} [Eén,
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Nogood Priority

▶ Reference point is defined for each variable in the nogood as
= 0.5

Can use the linear relaxed fractional value of the variable
(simplex)

▶ The priority of a variable fixing (xi= vi) is defined as the
decrease in the objective function when xi’s value changes
from the reference point to vi.

▶ Each no-good is assigned a priority that is equal to the sum of
the priorities of its variable fixings.
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Nogood Priority Example

▶ Minimize: x1+ 2x2+ 300x3+ x4+ x5+ 6000x6

▶ Subject to:

Constraint1: x1+ x2 >=1 priority 0.5 + 2*0.5 = 1.5
Constraint2: x2+ x3 >=1 priority 2*0.5 + 300*0.5 = 151
Constraint3: x1+ x6 <=1 priority -0.5 - 6000*0.5 = -3000.5
Constraint4: x1+ x4 <=1 priority -0.5 - 0.5 = -1
Constraint5: x1+ x5 <=1 priority -0.5 - 0.5 = -1

▶ Branch on x2 or x3, tie-break won by x2
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MOHP observations

▶ Only consider those no-goods which render the best
unconstrained vertex infeasible

▶ If there aren’t any such no-goods, then the best unconstrained
vertex is a solution

▶ In a best-first search, this vertex is also the optimal solution
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Heuristic for BCP based look-ahead branching
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Motivation

▶ Look-ahead branching based on Probing (BCP)

▶ Time consuming to run BCP with every variable that appears
in constraints having 2 variables

▶ Heuristic for running BCP with only a few such variables

▶ Example: PROP heuristic [Li and Anbulagan, 1997]
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Dominated Trigger

▶ A trigger is a variable and its fixing (to 0 or 1) used to initiate
BCP

▶ A dominated trigger is a trigger corresponding to a variable
fixing that is caused by some other trigger

▶ An APEX trigger is a trigger that is not dominated by any
other trigger

▶ Only variables from APEX triggers are considered for
branching

▶ Branch on variables on the periphery of the implication graph
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Apex Triggers example

Apex triggers in the constraint set below are (x4,0) and (x6,1).
We branch on one of x4 or x6, using maximin criteria
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Results
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Conclusions and future work

▶ Both heuristics comparable in performance to CPLEX strong
branching

▶ Can be integrated into PBO solvers

▶ Can even be used to solve ILPs that are not PBOs, by treating
the fractional part of each integer variable as a binary variable
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Thank You!

Questions and comments to tamvadss@mcmaster.ca and
hassini@mcmaster.ca
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