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Detecting Bugs with Certifying Algorithms

problem
answer

41?

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
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SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability testing of propositional formulas

I SAT competition requires solver to produce certificate (aka proof logging)

I Proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CFMSSK17],
LRAT [CFHH+17]; DRAT [WHH14] has become standard.

I certificates can help to
I prove correctness of answer
I detect and fix bugs, even when solver produced correct answer
I audit answer later on
I explain what solver is doing

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 3/ 14



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability testing of propositional formulas

I SAT competition requires solver to produce certificate (aka proof logging)

I Proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CFMSSK17],
LRAT [CFHH+17]; DRAT [WHH14] has become standard.

I certificates can help to
I prove correctness of answer
I detect and fix bugs, even when solver produced correct answer
I audit answer later on
I explain what solver is doing

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 3/ 14



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability testing of propositional formulas

I SAT competition requires solver to produce certificate (aka proof logging)

I Proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CFMSSK17],
LRAT [CFHH+17]; DRAT [WHH14] has become standard.

I certificates can help to
I prove correctness of answer
I detect and fix bugs, even when solver produced correct answer
I audit answer later on
I explain what solver is doing

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 3/ 14



. . . Except for SAT Solving Techniques That Can’t Be Certified

I too much overhead / too complicated proof logging for
I Parity reasoning (as in CryptoMiniSat [Cry] and Lingeling [Lin])
I Counting arguments (as in Lingeling)
I Symmetry breaking (as in BreakID [Bre])

⇒ no available implementations for proof logging

I Not using these techniques ⇒ exponential loss in reasoning power / performance

I How about practical proof logging for stronger solving paradigms?
I MaxSAT solving
I constraint programming (CP)
I mixed integer programming (MIP)
I algebraic reasoning / Gröbner basis computations
I pseudo-Boolean satisfiablity and optimization
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New Proof Systems on the Rise

many new proof systems with implemented proof checkers:

I propagation redundancy (PR) [HKB17a]

I practical polynomial calculus (PAC) [RBK18, KFB20]

I propagation redundancy for BDDs [BB21]

I Max-SAT resolution [PCH21]

I pseudo-Boolean proofs [EGMN20, GN21]
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SAT + Parity Reasoning

basic algorithm:

I search + smart look ahead + learning from failure (CDCL)

I Gaussian elimination on XORs [SNC09, HJ12] to detect
I propagation (forced values)
I contradiction (no solution)

applications:

I solving cryptographic problems

I approximate counting

I circuit verification
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x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0

Claim:

I only satisfied if x1 = 1

I Boolean variable x with domain 0 (false) or 1 (true)

I Literal: x or its negation x = 1− x

I Pseudo-Boolean constraint:
linear (in-)equality over literals

I Clause: at-least-one constraint

I Parity / XOR: equality modulo 2
notation: x1 ⊕ x2 ⊕ x3 = 1

I Assignment: function mapping variables to { 0, 1 }
I VeriPB Proof Format (PBP):

I based on pseudo-Boolean constraints
I has operations to reason with PB constraints

Goal: find assignment satisfying all constraints

How can we formalize this?
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Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0

⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs add both pseudo-Boolean constraints

x1 = 1 x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1 x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0

⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs

add both pseudo-Boolean constraints

x1 = 1

x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1 x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0

⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs

add both pseudo-Boolean constraints

x1 = 1

x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1

x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0 ⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs

add both pseudo-Boolean constraints

x1 = 1

x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1

x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0 ⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs add both pseudo-Boolean constraints

x1 = 1 x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1

x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0 ⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs add both pseudo-Boolean constraints

x1 = 1 x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1 x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0 ⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs add both pseudo-Boolean constraints

x1 = 1 x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1 x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Techniques for Efficient Parity Propagation

legend: can be verified, does not need to be verified, can not be verified

replace CNF encoding with internal XOR datastructure

use gaussian elimination to detect propagation
generate reason clause
detect CNF encoding of XORs with bloom filters [SM19]
blast and recover XORs for inprocessing [SM19]
use watched literals structure [HJ12]
use sophisticated bit parallelism [HJ12, SGM20]
generate reason clause only lazyly [SGM20]

Note:

I proof logging verifies that propagations are correct

I no guarantee that all propagations detected

I SAT inprocessing requires to generalize DRAT (next slides)
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More Notation

I (partial) substitution ω = { y1 7→ 0 }
function that maps variables to literals or { 0, 1 }

I variable substitution

(x1 + x2 + x3 ≥ 2y1)�ω = x1 + x2 + x3 ≥ 0

I F |= F ′: satisfying assignment to F is also satisfying assignment to F ′

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 10/ 14



Substitution Redundancy Rule (Generalizing DRAT)

Substitution Redundancy (generalizing [HKB17b, BT19] to pseudo-Boolean)

Can add constraint C to formula F if and only if there is a witnessing partial
substitution ω such that

F ∧ ¬C |= (F ∧ C )�ω

I C need not be implied, but F satisfiable if and only if F ∧ C satisfiable

I as stated, to good to be true: can derive contradiction in one step

I make efficiently verifiable by insisting implication easy to check

I generalizes DRAT [HKB17b]

I ⇒ all SAT pre- and inprocessing techniques covered
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Can add constraint C to formula F if and only if there is a witnessing partial
substitution ω such that

F ∧ ¬C |= (F ∧ C )�ω

I C need not be implied, but F satisfiable if and only if F ∧ C satisfiable

I as stated, to good to be true: can derive contradiction in one step

I make efficiently verifiable by insisting implication easy to check

I generalizes DRAT [HKB17b]

I ⇒ all SAT pre- and inprocessing techniques covered

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 11/ 14



Example Substitution Redundancy

For fresh variable y1 (not appearing in F ), want to add...

C : x1 + x2 + x3 ≥ 2y1

Choose witness ω = { y1 7→ 0 }
Check condition F ∧ ¬C |= (F ∧ C )�ω, i.e.,

F ∧ (x1 + x2 + x3 < 2y1)|= F ∧ (x1 + x2 + x3 ≥ 2y1)�ω

concrete proof format:

red 1 x1 +1 x2 +1 x3 -2 y1 >= 0 ; y1 -> 0
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Experiments

I Implemented “plug and play” XorEngine with proof logging1 in MiniSAT2

I Evaluated on crafted benchmarks (Tseitin-Formulas)
represent worst case with single large XOR matrix

I DRAT proof for comparison [PR16]
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1https://gitlab.com/MIAOresearch/xorengine
2https://gitlab.com/MIAOresearch/minisat_with_xorengine
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Conclusion
I proof logging is well-established standard for SAT solving

I so far, prohibitively expensive for some techniques
(XOR reasoning, counting arguments, symmetry breaking)

Our work: Proof logging for SAT solving and XOR reasoning with VeriPB3

I simple to implement + efficient proof checking

Future work:
I capture more types of reasoning within SAT solvers

I counting arguments (should be straightforward)
I symmetry breaking

I provide efficient proof logging also for other paradigms
(MaxSAT, pseudo-Boolean optimization, MIP)

I new expressive proof formats and verifiers for competitions
(why not with VeriPB ;-) )

3

https://gitlab.com/MIAOresearch/VeriPB
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