
Certifying Parity Reasoning Efficiently
Using Pseudo-Boolean Proofs

Stephan Gocht, Jakob Nordström

February 2021



Detecting Bugs with Certifying Algorithms

problem
answer

41?

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 2/ 14



Detecting Bugs with Certifying Algorithms

problem
answer

41?

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 2/ 14



Detecting Bugs with Certifying Algorithms

problem
answer

41?

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 2/ 14



Detecting Bugs with Certifying Algorithms

problem
answer

41?

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 2/ 14



Detecting Bugs with Certifying Algorithms

problem
answer

41?certificate

verification
of answer

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 2/ 14



Detecting Bugs with Certifying Algorithms

problem
answer

41?certificate

verification
of answer

propositional satisfiability
with parity constraints

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 2/ 14



Detecting Bugs with Certifying Algorithms

problem
answer

41?certificate

verification
of answer

propositional satisfiability
with parity constraints

SAT solver
with Gaussian elimination 

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 2/ 14



Detecting Bugs with Certifying Algorithms

problem
answer

41?certificate

verification
of answer

propositional satisfiability
with parity constraints

SAT solver
with Gaussian elimination 

pseudo-Boolen proofs
(0-1 linear inequalities)

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 2/ 14



Detecting Bugs with Certifying Algorithms

problem
answer

41?certificate

verification
of answer

propositional satisfiability
with parity constraints

SAT solver
with Gaussian elimination 

pseudo-Boolen proofs
(0-1 linear inequalities)

with VeriPB

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 2/ 14



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability testing of propositional formulas

I SAT competition requires solver to produce certificate (aka proof logging)

I Proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CFMSSK17],
LRAT [CFHH+17]; DRAT [WHH14] has become standard.

I certificates can help to
I prove correctness of answer
I detect and fix bugs, even when solver produced correct answer
I audit answer later on
I explain what solver is doing

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 3/ 14



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability testing of propositional formulas

I SAT competition requires solver to produce certificate (aka proof logging)

I Proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CFMSSK17],
LRAT [CFHH+17]; DRAT [WHH14] has become standard.

I certificates can help to
I prove correctness of answer
I detect and fix bugs, even when solver produced correct answer
I audit answer later on
I explain what solver is doing

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 3/ 14



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability testing of propositional formulas

I SAT competition requires solver to produce certificate (aka proof logging)

I Proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CFMSSK17],
LRAT [CFHH+17]; DRAT [WHH14] has become standard.

I certificates can help to
I prove correctness of answer
I detect and fix bugs, even when solver produced correct answer
I audit answer later on
I explain what solver is doing

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 3/ 14



. . . Except for SAT Solving Techniques That Can’t Be Certified

I too much overhead / too complicated proof logging for
I Parity reasoning (as in CryptoMiniSat [Cry] and Lingeling [Lin])
I Counting arguments (as in Lingeling)
I Symmetry breaking (as in BreakID [Bre])

⇒ no available implementations for proof logging

I Not using these techniques ⇒ exponential loss in reasoning power / performance

I How about practical proof logging for stronger solving paradigms?
I MaxSAT solving
I constraint programming (CP)
I mixed integer programming (MIP)
I algebraic reasoning / Gröbner basis computations
I pseudo-Boolean satisfiablity and optimization

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 4/ 14



. . . Except for SAT Solving Techniques That Can’t Be Certified

I too much overhead / too complicated proof logging for
I Parity reasoning (as in CryptoMiniSat [Cry] and Lingeling [Lin])
I Counting arguments (as in Lingeling)
I Symmetry breaking (as in BreakID [Bre])

⇒ no available implementations for proof logging

I Not using these techniques ⇒ exponential loss in reasoning power / performance

I How about practical proof logging for stronger solving paradigms?
I MaxSAT solving
I constraint programming (CP)
I mixed integer programming (MIP)
I algebraic reasoning / Gröbner basis computations
I pseudo-Boolean satisfiablity and optimization

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 4/ 14



New Proof Systems on the Rise

many new proof systems with implemented proof checkers:

I propagation redundancy (PR) [HKB17a]

I practical polynomial calculus (PAC) [RBK18, KFB20]

I propagation redundancy for BDDs [BB21]

I Max-SAT resolution [PCH21]

I pseudo-Boolean proofs [EGMN20, GN21]

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 5/ 14



SAT + Parity Reasoning

basic algorithm:

I search + smart look ahead + learning from failure (CDCL)

I Gaussian elimination on XORs [SNC09, HJ12] to detect
I propagation (forced values)
I contradiction (no solution)

applications:

I solving cryptographic problems

I approximate counting

I circuit verification

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 6/ 14



SAT + Parity Reasoning

basic algorithm:

I search + smart look ahead + learning from failure (CDCL)
I Gaussian elimination on XORs [SNC09, HJ12] to detect

I propagation (forced values)
I contradiction (no solution)

applications:

I solving cryptographic problems

I approximate counting

I circuit verification

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 6/ 14



SAT + Parity Reasoning

basic algorithm:

I search + smart look ahead + learning from failure (CDCL)
I Gaussian elimination on XORs [SNC09, HJ12] to detect

I propagation (forced values)
I contradiction (no solution)

applications:

I solving cryptographic problems

I approximate counting

I circuit verification

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 6/ 14



x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0

Claim:

I only satisfied if x1 = 1

I Boolean variable x with domain 0 (false) or 1 (true)

I Literal: x or its negation x = 1− x

I Pseudo-Boolean constraint:
linear (in-)equality over literals

I Clause: at-least-one constraint

I Parity / XOR: equality modulo 2
notation: x1 ⊕ x2 ⊕ x3 = 1

I Assignment: function mapping variables to { 0, 1 }
I VeriPB Proof Format (PBP):

I based on pseudo-Boolean constraints
I has operations to reason with PB constraints

Goal: find assignment satisfying all constraints

How can we formalize this?

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 7/ 14



x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0

Claim:

I only satisfied if x1 = 1

I Boolean variable x with domain 0 (false) or 1 (true)

I Literal: x or its negation x = 1− x

I Pseudo-Boolean constraint:
linear (in-)equality over literals

I Clause: at-least-one constraint

I Parity / XOR: equality modulo 2
notation: x1 ⊕ x2 ⊕ x3 = 1

I Assignment: function mapping variables to { 0, 1 }
I VeriPB Proof Format (PBP):

I based on pseudo-Boolean constraints
I has operations to reason with PB constraints

Goal: find assignment satisfying all constraints

How can we formalize this?

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 7/ 14



x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0

Claim:

I only satisfied if x1 = 1

I Boolean variable x with domain 0 (false) or 1 (true)

I Literal: x or its negation x = 1− x

I Pseudo-Boolean constraint:
linear (in-)equality over literals

I Clause: at-least-one constraint

I Parity / XOR: equality modulo 2
notation: x1 ⊕ x2 ⊕ x3 = 1

I Assignment: function mapping variables to { 0, 1 }
I VeriPB Proof Format (PBP):

I based on pseudo-Boolean constraints
I has operations to reason with PB constraints

Goal: find assignment satisfying all constraints

How can we formalize this?

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 7/ 14



x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0

Claim:

I only satisfied if x1 = 1

I Boolean variable x with domain 0 (false) or 1 (true)

I Literal: x or its negation x = 1− x

I Pseudo-Boolean constraint:
linear (in-)equality over literals

I Clause: at-least-one constraint

I Parity / XOR: equality modulo 2
notation: x1 ⊕ x2 ⊕ x3 = 1

I Assignment: function mapping variables to { 0, 1 }
I VeriPB Proof Format (PBP):

I based on pseudo-Boolean constraints
I has operations to reason with PB constraints

Goal: find assignment satisfying all constraints

How can we formalize this?
Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 7/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0

⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs add both pseudo-Boolean constraints

x1 = 1 x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1 x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0

⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs

add both pseudo-Boolean constraints

x1 = 1

x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1 x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0

⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs

add both pseudo-Boolean constraints

x1 = 1

x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1

x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0 ⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs

add both pseudo-Boolean constraints

x1 = 1

x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1

x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0 ⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs add both pseudo-Boolean constraints

x1 = 1 x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1

x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0 ⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs add both pseudo-Boolean constraints

x1 = 1 x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1 x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Example
Step 1: Translate XORs

x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 1


clausal encoding of
x1 ⊕ x2 ⊕ x3 = 1

⇒ convert to pseudo-Boolean constraint
x1 + x2 + x3 = 1 + 2y1

x2 + x3 ≥ 1
x2 + x3 ≥ 1

}
x2 ⊕ x3 = 0 ⇒ x2 + x3 = 0 + 2y2

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs add both pseudo-Boolean constraints

x1 = 1 x1 + 2x2 + 2x3 = 1 + 2y1 + 2y2

Step 3: Reason clause generation

x1 ≥ 1 x1 ≥ 1

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 8/ 14



Techniques for Efficient Parity Propagation

legend: can be verified, does not need to be verified, can not be verified

replace CNF encoding with internal XOR datastructure

use gaussian elimination to detect propagation
generate reason clause
detect CNF encoding of XORs with bloom filters [SM19]
blast and recover XORs for inprocessing [SM19]
use watched literals structure [HJ12]
use sophisticated bit parallelism [HJ12, SGM20]
generate reason clause only lazyly [SGM20]

Note:

I proof logging verifies that propagations are correct

I no guarantee that all propagations detected

I SAT inprocessing requires to generalize DRAT (next slides)

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 9/ 14



Techniques for Efficient Parity Propagation

legend: can be verified, does not need to be verified, can not be verified

replace CNF encoding with internal XOR datastructure
use gaussian elimination to detect propagation

generate reason clause
detect CNF encoding of XORs with bloom filters [SM19]
blast and recover XORs for inprocessing [SM19]
use watched literals structure [HJ12]
use sophisticated bit parallelism [HJ12, SGM20]
generate reason clause only lazyly [SGM20]

Note:

I proof logging verifies that propagations are correct

I no guarantee that all propagations detected

I SAT inprocessing requires to generalize DRAT (next slides)

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 9/ 14



Techniques for Efficient Parity Propagation

legend: can be verified, does not need to be verified, can not be verified

replace CNF encoding with internal XOR datastructure
use gaussian elimination to detect propagation
generate reason clause

detect CNF encoding of XORs with bloom filters [SM19]
blast and recover XORs for inprocessing [SM19]
use watched literals structure [HJ12]
use sophisticated bit parallelism [HJ12, SGM20]
generate reason clause only lazyly [SGM20]

Note:

I proof logging verifies that propagations are correct

I no guarantee that all propagations detected

I SAT inprocessing requires to generalize DRAT (next slides)

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 9/ 14



Techniques for Efficient Parity Propagation

legend: can be verified, does not need to be verified, can not be verified

replace CNF encoding with internal XOR datastructure
use gaussian elimination to detect propagation
generate reason clause
detect CNF encoding of XORs with bloom filters [SM19]

blast and recover XORs for inprocessing [SM19]
use watched literals structure [HJ12]
use sophisticated bit parallelism [HJ12, SGM20]
generate reason clause only lazyly [SGM20]

Note:

I proof logging verifies that propagations are correct

I no guarantee that all propagations detected

I SAT inprocessing requires to generalize DRAT (next slides)

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 9/ 14



Techniques for Efficient Parity Propagation

legend: can be verified, does not need to be verified, can not be verified

replace CNF encoding with internal XOR datastructure
use gaussian elimination to detect propagation
generate reason clause
detect CNF encoding of XORs with bloom filters [SM19]
blast and recover XORs for inprocessing [SM19]

use watched literals structure [HJ12]
use sophisticated bit parallelism [HJ12, SGM20]
generate reason clause only lazyly [SGM20]

Note:

I proof logging verifies that propagations are correct

I no guarantee that all propagations detected

I SAT inprocessing requires to generalize DRAT (next slides)

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 9/ 14



Techniques for Efficient Parity Propagation

legend: can be verified, does not need to be verified, can not be verified

replace CNF encoding with internal XOR datastructure
use gaussian elimination to detect propagation
generate reason clause
detect CNF encoding of XORs with bloom filters [SM19]
blast and recover XORs for inprocessing [SM19]
use watched literals structure [HJ12]

use sophisticated bit parallelism [HJ12, SGM20]
generate reason clause only lazyly [SGM20]

Note:

I proof logging verifies that propagations are correct

I no guarantee that all propagations detected

I SAT inprocessing requires to generalize DRAT (next slides)

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 9/ 14



Techniques for Efficient Parity Propagation

legend: can be verified, does not need to be verified, can not be verified

replace CNF encoding with internal XOR datastructure
use gaussian elimination to detect propagation
generate reason clause
detect CNF encoding of XORs with bloom filters [SM19]
blast and recover XORs for inprocessing [SM19]
use watched literals structure [HJ12]
use sophisticated bit parallelism [HJ12, SGM20]

generate reason clause only lazyly [SGM20]

Note:

I proof logging verifies that propagations are correct

I no guarantee that all propagations detected

I SAT inprocessing requires to generalize DRAT (next slides)

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 9/ 14



Techniques for Efficient Parity Propagation

legend: can be verified, does not need to be verified, can not be verified

replace CNF encoding with internal XOR datastructure
use gaussian elimination to detect propagation
generate reason clause
detect CNF encoding of XORs with bloom filters [SM19]
blast and recover XORs for inprocessing [SM19]
use watched literals structure [HJ12]
use sophisticated bit parallelism [HJ12, SGM20]
generate reason clause only lazyly [SGM20]

Note:

I proof logging verifies that propagations are correct

I no guarantee that all propagations detected

I SAT inprocessing requires to generalize DRAT (next slides)

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 9/ 14



Techniques for Efficient Parity Propagation

legend: can be verified, does not need to be verified, can not be verified

replace CNF encoding with internal XOR datastructure
use gaussian elimination to detect propagation
generate reason clause
detect CNF encoding of XORs with bloom filters [SM19]
blast and recover XORs for inprocessing [SM19]
use watched literals structure [HJ12]
use sophisticated bit parallelism [HJ12, SGM20]
generate reason clause only lazyly [SGM20]

Note:

I proof logging verifies that propagations are correct

I no guarantee that all propagations detected

I SAT inprocessing requires to generalize DRAT (next slides)

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 9/ 14



Techniques for Efficient Parity Propagation

legend: can be verified, does not need to be verified, can not be verified

replace CNF encoding with internal XOR datastructure
use gaussian elimination to detect propagation
generate reason clause
detect CNF encoding of XORs with bloom filters [SM19]
blast and recover XORs for inprocessing? [SM19]
use watched literals structure [HJ12]
use sophisticated bit parallelism [HJ12, SGM20]
generate reason clause only lazyly [SGM20]

Note:

I proof logging verifies that propagations are correct

I no guarantee that all propagations detected

I SAT inprocessing requires to generalize DRAT (next slides)

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 9/ 14



More Notation

I (partial) substitution ω = { y1 7→ 0 }
function that maps variables to literals or { 0, 1 }

I variable substitution

(x1 + x2 + x3 ≥ 2y1)�ω = x1 + x2 + x3 ≥ 0

I F |= F ′: satisfying assignment to F is also satisfying assignment to F ′

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 10/ 14



Substitution Redundancy Rule (Generalizing DRAT)

Substitution Redundancy (generalizing [HKB17b, BT19] to pseudo-Boolean)

Can add constraint C to formula F if and only if there is a witnessing partial
substitution ω such that

F ∧ ¬C |= (F ∧ C )�ω

I C need not be implied, but F satisfiable if and only if F ∧ C satisfiable

I as stated, to good to be true: can derive contradiction in one step

I make efficiently verifiable by insisting implication easy to check

I generalizes DRAT [HKB17b]

I ⇒ all SAT pre- and inprocessing techniques covered

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 11/ 14



Substitution Redundancy Rule (Generalizing DRAT)

Substitution Redundancy (generalizing [HKB17b, BT19] to pseudo-Boolean)

Can add constraint C to formula F if and only if there is a witnessing partial
substitution ω such that

F ∧ ¬C |= (F ∧ C )�ω

I C need not be implied, but F satisfiable if and only if F ∧ C satisfiable

I as stated, to good to be true: can derive contradiction in one step

I make efficiently verifiable by insisting implication easy to check

I generalizes DRAT [HKB17b]

I ⇒ all SAT pre- and inprocessing techniques covered

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 11/ 14



Substitution Redundancy Rule (Generalizing DRAT)

Substitution Redundancy (generalizing [HKB17b, BT19] to pseudo-Boolean)

Can add constraint C to formula F if and only if there is a witnessing partial
substitution ω such that

F ∧ ¬C |= (F ∧ C )�ω

I C need not be implied, but F satisfiable if and only if F ∧ C satisfiable

I as stated, to good to be true: can derive contradiction in one step

I make efficiently verifiable by insisting implication easy to check

I generalizes DRAT [HKB17b]

I ⇒ all SAT pre- and inprocessing techniques covered

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 11/ 14



Substitution Redundancy Rule (Generalizing DRAT)

Substitution Redundancy (generalizing [HKB17b, BT19] to pseudo-Boolean)

Can add constraint C to formula F if and only if there is a witnessing partial
substitution ω such that

F ∧ ¬C |= (F ∧ C )�ω

I C need not be implied, but F satisfiable if and only if F ∧ C satisfiable

I as stated, to good to be true: can derive contradiction in one step

I make efficiently verifiable by insisting implication easy to check

I generalizes DRAT [HKB17b]

I ⇒ all SAT pre- and inprocessing techniques covered

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 11/ 14



Example Substitution Redundancy

For fresh variable y1 (not appearing in F ), want to add...

C : x1 + x2 + x3 ≥ 2y1

Choose witness ω = { y1 7→ 0 }
Check condition F ∧ ¬C |= (F ∧ C )�ω, i.e.,

F ∧ (x1 + x2 + x3 < 2y1)|= F ∧ (x1 + x2 + x3 ≥ 2y1)�ω

concrete proof format:

red 1 x1 +1 x2 +1 x3 -2 y1 >= 0 ; y1 -> 0

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 12/ 14



Example Substitution Redundancy

For fresh variable y1 (not appearing in F ), want to add...

C : x1 + x2 + x3 ≥ 2y1

Choose witness ω = { y1 7→ 0 }
Check condition F ∧ ¬C |= (F ∧ C )�ω, i.e.,

F ∧ (x1 + x2 + x3 < 2y1)|= F ∧ (x1 + x2 + x3 ≥ 2y1)�ω

concrete proof format:

red 1 x1 +1 x2 +1 x3 -2 y1 >= 0 ; y1 -> 0

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 12/ 14



Example Substitution Redundancy

For fresh variable y1 (not appearing in F ), want to add...

C : x1 + x2 + x3 ≥ 2y1

Choose witness ω = { y1 7→ 0 }
Check condition F ∧ ¬C |= (F ∧ C )�ω, i.e.,

F ∧ (x1 + x2 + x3 < 2y1)|= F ∧ (x1 + x2 + x3 ≥ 0)

concrete proof format:

red 1 x1 +1 x2 +1 x3 -2 y1 >= 0 ; y1 -> 0

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 12/ 14



Example Substitution Redundancy

For fresh variable y1 (not appearing in F ), want to add...

C : x1 + x2 + x3 ≥ 2y1

Choose witness ω = { y1 7→ 0 }
Check condition F ∧ ¬C |= (F ∧ C )�ω, i.e.,

F ∧ (x1 + x2 + x3 < 2y1)|= F ∧ (x1 + x2 + x3 ≥ 0)

concrete proof format:

red 1 x1 +1 x2 +1 x3 -2 y1 >= 0 ; y1 -> 0

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 12/ 14



Experiments

I Implemented “plug and play” XorEngine with proof logging1 in MiniSAT2

I Evaluated on crafted benchmarks (Tseitin-Formulas)
represent worst case with single large XOR matrix

I DRAT proof for comparison [PR16]

0.1

10

1000

3 10 30 100
Instance Size (KiB)

P
ro

of
 S

iz
e 

(M
iB

)

Proof Format

minisat_drat

minisat_pbp

0.01

0.1

1

10

100

3 10 30 100
Instance Size (KiB)

T
im

e 
(s

)

Tool

DRAT−trim (DRAT verification)

VeriPB (PBP verification)

MiniSAT+XOR (PBP)

MiniSAT+XOR (DRAT)

1https://gitlab.com/MIAOresearch/xorengine
2https://gitlab.com/MIAOresearch/minisat_with_xorengine

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 13/ 14

https://gitlab.com/MIAOresearch/xorengine
https://gitlab.com/MIAOresearch/minisat_with_xorengine


Conclusion
I proof logging is well-established standard for SAT solving

I so far, prohibitively expensive for some techniques
(XOR reasoning, counting arguments, symmetry breaking)

Our work: Proof logging for SAT solving and XOR reasoning with VeriPB3

I simple to implement + efficient proof checking

Future work:
I capture more types of reasoning within SAT solvers

I counting arguments (should be straightforward)
I symmetry breaking

I provide efficient proof logging also for other paradigms
(MaxSAT, pseudo-Boolean optimization, MIP)

I new expressive proof formats and verifiers for competitions
(why not with VeriPB ;-) )

3

https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 14/ 14

https://gitlab.com/MIAOresearch/VeriPB


Conclusion
I proof logging is well-established standard for SAT solving

I so far, prohibitively expensive for some techniques
(XOR reasoning, counting arguments, symmetry breaking)

Our work: Proof logging for SAT solving and XOR reasoning with VeriPB3

I simple to implement + efficient proof checking

Future work:
I capture more types of reasoning within SAT solvers

I counting arguments (should be straightforward)
I symmetry breaking

I provide efficient proof logging also for other paradigms
(MaxSAT, pseudo-Boolean optimization, MIP)

I new expressive proof formats and verifiers for competitions
(why not with VeriPB ;-) )

3https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 14/ 14

https://gitlab.com/MIAOresearch/VeriPB


Conclusion
I proof logging is well-established standard for SAT solving

I so far, prohibitively expensive for some techniques
(XOR reasoning, counting arguments, symmetry breaking)

Our work: Proof logging for SAT solving and XOR reasoning with VeriPB3

I simple to implement + efficient proof checking

Future work:
I capture more types of reasoning within SAT solvers

I counting arguments (should be straightforward)
I symmetry breaking

I provide efficient proof logging also for other paradigms
(MaxSAT, pseudo-Boolean optimization, MIP)

I new expressive proof formats and verifiers for competitions
(why not with VeriPB ;-) )

3https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 14/ 14

https://gitlab.com/MIAOresearch/VeriPB


References I

[BB21] Lee A. Barnett and Armin Biere.
Non-clausal redundancy properties.
In Proceedings of the 28th International Conference on Automated Deduction (CADE-28), page
to appear, 2021.

[Bie06] Armin Biere.
Tracecheck.
http://fmv.jku.at/tracecheck/, 2006.

[Bre] BreakID.
https://bitbucket.org/krr/breakid/src/master/.

[BT19] Sam Buss and Neil Thapen.
DRAT proofs, propagation redundancy, and extended resolution.
In Mikolás Janota and Inês Lynce, editors, Theory and Applications of Satisfiability Testing - SAT
2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings,
volume 11628 of Lecture Notes in Computer Science, pages 71–89. Springer, 2019.

[CFHH+17] Lúıs Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt, Matt Kaufmann, and Peter
Schneider-Kamp.
Efficient certified rat verification.
In Leonardo de Moura, editor, Automated Deduction – CADE 26, pages 220–236, Cham, 2017.
Springer International Publishing.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 1/ 5

http://fmv.jku.at/tracecheck/
https://bitbucket.org/krr/breakid/src/master/


References II

[CFMSSK17] Lúıs Cruz-Filipe, Joao Marques-Silva, and Peter Schneider-Kamp.
Efficient certified resolution proof checking.
In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 118–135. Springer Berlin Heidelberg, 2017.

[Cry] CryptoMiniSat.
https://github.com/msoos/cryptominisat/.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Justifying all differences using pseudo-boolean reasoning.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence. To appear, 2020.

[GN03] Evguenii I. Goldberg and Yakov Novikov.
Verification of proofs of unsatisfiability for CNF formulas.
In Design, Automation and Test in Europe Conference (DATE), pages 10886–10891. IEEE
Computer Society, 2003.

[GN21] Stephan Gocht and Jakob Nordström.
Certifying parity reasoning efficiently using pseudo-Boolean proofs.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, 2021.
To appear.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 2/ 5

https://github.com/msoos/cryptominisat/


References III

[HJ12] Cheng-Shen Han and Jie-Hong Roland Jiang.
When boolean satisfiability meets Gaussian elimination in a Simplex way.
In Computer Aided Verification, CAV, pages 410–426, 2012.

[HKB17a] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere.
Short proofs without new variables.
In Leonardo de Moura, editor, Automated Deduction - CADE 26 - 26th International Conference
on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings, volume 10395
of Lecture Notes in Computer Science, pages 130–147. Springer, 2017.

[HKB17b] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere.
Short proofs without new variables.
In Proceedings of the 26th International Conference on Automated Deduction (CADE-26),
volume 10395 of Lecture Notes in Computer Science, pages 130–147. Springer, August 2017.

[KFB20] Daniela Kaufmann, Mathias Fleury, and Armin Biere.
The proof checkers pacheck and pastÃ¨que for the practical algebraic calculus.
In Ofer Strichman and Alexander Ivrii, editors, Formal Methods in Computer-Aided Design,
FMCAD 2020., volume 1, pages 264–269. TU Vienna Academic Press, 2020.

[Lin] Lingeling, Plingeling and Treengeling.
http://fmv.jku.at/lingeling/.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 3/ 5

http://fmv.jku.at/lingeling/


References IV

[PCH21] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet.
A proof builder for max-sat.
In Chu-Min Li and Felip Manyà, editors, Theory and Applications of Satisfiability Testing – SAT
2021, pages 488–498, Cham, 2021. Springer International Publishing.

[PR16] Tobias Philipp and Adrian Rebola-Pardo.
DRAT proofs for XOR reasoning.
In Logics in Artificial Intelligence (JELIA 2016)., volume 10021 of Lecture Notes in Computer
Science., pages 415–429, 2016.

[RBK18] Daniela Ritirc, Armin Biere, and Manuel Kauers.
A practical polynomial calculus for arithmetic circuit verification.
In Anna M. Bigatti and Martin Brain, editors, 3rd International Workshop on Satisfiability
Checking and Symbolic Computation (SC2’18), pages 61–76. CEUR-WS, 2018.

[SGM20] Mate Soos, Stephan Gocht, and Kuldeep S. Meel.
Tinted, detached, and lazy CNF-XOR solving and its applications to counting and sampling.
In Computer Aided Verification, CAV 2020, volume 12224 of Lecture Notes in Computer Science,
pages 463–484. Springer, 2020.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 4/ 5



References V

[SM19] Mate Soos and Kuldeep S. Meel.
BIRD: engineering an efficient CNF-XOR SAT solver and its applications to approximate model
counting.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, pages 1592–1599, 2019.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia.
Extending SAT Solvers to Cryptographic Problems.
In Proc. of SAT, 2009.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr.
DRAT-trim: Efficient checking and trimming using expressive clausal proofs.
In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,
July 2014.

Stephan Gocht — stephan.gocht@cs.lth.se Certified Parity Reasoning 5/ 5


	Appendix

