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Detecting Bugs with Certifying Algorithms

problem
answer

41?

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
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SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability testing of propositional formulas

I SAT competition requires solver to produce certificate (aka proof logging)

I Proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CFMSSK17],
LRAT [CFHH+17]; DRAT [WHH14] has become standard.

I certificates can help to
I prove correctness of answer
I detect and fix bugs, even when solver produced correct answer
I audit answer later on
I explain what solver is doing
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. . . That is Easy to Use . . .

PB formula
PB to CNF
translation

SAT solver
result:

SAT / UNSAT
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. . . Except for SAT Solving Techniques That Can’t Be Certified

I too much overhead / too complicated proof logging for
I Parity reasoning (as in CryptoMiniSat [Cry] and Lingeling [Lin])
I Counting arguments (as in Lingeling)
I Symmetry breaking (as in BreakID [Bre])

⇒ no available implementations for proof logging

I Not using these techniques ⇒ exponential loss in reasoning power / performance

I How about practical proof logging for stronger solving paradigms?
I MaxSAT solving
I constraint programming (CP)
I mixed integer programming (MIP)
I algebraic reasoning / Gröbner basis computations
I pseudo-Boolean satisfiablity and optimization
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New Proof Systems on the Rise

many new proof systems with implemented proof checkers:

I propagation redundancy (PR) [HKB17]

I practical polynomial calculus (PAC) [RBK18, KFB20]

I propagation redundancy for BDDs [BB21]

I Max-SAT resolution [PCH21]

I pseudo-Boolean proofs [EGMN20, GN21]
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Our Work

I general purpose proof format: pseudo-Boolean proofs (PBP)

I reference implementation of verifier: VeriPB1

I allows easy proof logging for
I reasoning with 0-1 linear inequalities (by design)
I all-different constraints [EGMN20]
I subgraph isomorphism [GMN20]
I clique and maximum common (connected) subgraph [GMM+20]
I parity reasoning [GN21]
I SAT pre- and inprocessing [GN21]

This Work (by using VeriPB)

I proof logging for translating 0-1 linear inequalities to CNF (work in progress)
so far only sequential counter [Sin05], many more encodings exist

I allows proof logging for SAT-based pseudo-Bolean solving

1https://gitlab.com/MIAOresearch/VeriPB
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System Overview

PB formula
PB to CNF
translation

SAT solver
result:

SAT / UNSAT

verifier verification
of answer

DRAT proof /
solution

pseudo-Boolean
proof

(VeriPB)
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Basic Notation

Starting from

x1 + x2 + x3 ≥ 2

want to derive

x1 + s1,1 ≥ 1

x1 + s1,1 ≥ 1

x2 + s2,1 ≥ 1

s1,1 + s2,1 ≥ 1

x2 + s1,1 + s2,1 ≥ 1

x2 + s1,1 + s2,2 ≥ 1

. . .

I Boolean variable x with domain 0 (false) or 1 (true)

I Literal: x or its negation x = 1− x

I Pseudo-Boolean (PB) constraint:
linear (in-)equality over literals

I Clause: at-least-one constraint
I Proof Format:

I based on pseudo-Boolean constraints
I has operations to reason with PB constraints
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Sequential Counter Encoding

High level specification:

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3
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From Specification to CNF

High Level Specification:

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3

I to enforce x1 + x2 + x3 ≥ 2 need to fix output bits s3,1, s3,2, s3,3

Add specifications together:

I only used addition of constraints

I given specification, all clauses in encoding trivial to derive (via RUP)

⇒ derivation can be expressed in VeriPB proof system
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Conclusion

I proof logging is well-established standard for SAT solving

I so far, not applicable to stronger paradigms

Our work: Proof logging translating 0-1 linear inequalities to CNF with VeriPB2

I allows proof logging for SAT based pseudo-Boolean solving

Future work:

I provide efficient proof logging also for optimization
(pseudo-Boolean optimization, MaxSAT, MIP)

I express MaxSAT techniques (e.g. core guided search, MaxHS) in PB language

I new expressive proof formats and verifiers for competitions
(why not with VeriPB ;-) )

2

https://gitlab.com/MIAOresearch/VeriPB
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