
Certifying CNF Encodings of Pseudo-Boolean Constraints

Stephan Gocht, Ruben Martins and Jakob Nordström

July 2021



Detecting Bugs with Certifying Algorithms

problem
answer

41?

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 2/ 13



Detecting Bugs with Certifying Algorithms

problem
answer

41?

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 2/ 13



Detecting Bugs with Certifying Algorithms

problem
answer

41?

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 2/ 13



Detecting Bugs with Certifying Algorithms

problem
answer

41?

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 2/ 13



Detecting Bugs with Certifying Algorithms

problem
answer

41?certificate

verification
of answer

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 2/ 13



Detecting Bugs with Certifying Algorithms

problem
answer

41?certificate

verification
of answer

pseudo-Boolean (PB)
satisfiability

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 2/ 13



Detecting Bugs with Certifying Algorithms

problem
answer

41?certificate

verification
of answer

pseudo-Boolean (PB)
satisfiability

SAT solver
using PB to CNF translation

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 2/ 13



Detecting Bugs with Certifying Algorithms

problem
answer

41?certificate

verification
of answer

pseudo-Boolean (PB)
satisfiability

SAT solver
using PB to CNF translation

pseudo-Boolen proofs
(0-1 linear inequalities)

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 2/ 13



Detecting Bugs with Certifying Algorithms

problem
answer

41?certificate

verification
of answer

pseudo-Boolean (PB)
satisfiability

SAT solver
using PB to CNF translation

pseudo-Boolen proofs
(0-1 linear inequalities)

with VeriPB

I formally verify solver?
usually not feasible / too costly

I instead: formally verify answer!
Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 2/ 13



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability testing of propositional formulas

I SAT competition requires solver to produce certificate (aka proof logging)

I Proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CFMSSK17],
LRAT [CFHH+17]; DRAT [WHH14] has become standard.

I certificates can help to
I prove correctness of answer
I detect and fix bugs, even when solver produced correct answer
I audit answer later on
I explain what solver is doing

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 3/ 13



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability testing of propositional formulas

I SAT competition requires solver to produce certificate (aka proof logging)

I Proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CFMSSK17],
LRAT [CFHH+17]; DRAT [WHH14] has become standard.

I certificates can help to
I prove correctness of answer
I detect and fix bugs, even when solver produced correct answer
I audit answer later on
I explain what solver is doing

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 3/ 13



SAT Solving — A Success Story for Certifying Algorithms . . .

I SAT = satisfiability testing of propositional formulas

I SAT competition requires solver to produce certificate (aka proof logging)

I Proof formats such as RUP [GN03], TraceCheck [Bie06], GRIT [CFMSSK17],
LRAT [CFHH+17]; DRAT [WHH14] has become standard.

I certificates can help to
I prove correctness of answer
I detect and fix bugs, even when solver produced correct answer
I audit answer later on
I explain what solver is doing

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 3/ 13



. . . That is Easy to Use . . .

PB formula
PB to CNF
translation

SAT solver
result:

SAT / UNSAT

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 4/ 13



. . . That is Easy to Use . . .

PB formula
PB to CNF
translation

SAT solver
result:

SAT / UNSAT

verifier verification
of answer

DRAT proof /
solution

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 4/ 13



. . . That is Easy to Use . . .

PB formula
PB to CNF
translation

SAT solver
result:

SAT / UNSAT

verifier verification
of answer

DRAT proof /
solution?

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 4/ 13



. . . Except for SAT Solving Techniques That Can’t Be Certified

I too much overhead / too complicated proof logging for
I Parity reasoning (as in CryptoMiniSat [Cry] and Lingeling [Lin])
I Counting arguments (as in Lingeling)
I Symmetry breaking (as in BreakID [Bre])

⇒ no available implementations for proof logging

I Not using these techniques ⇒ exponential loss in reasoning power / performance

I How about practical proof logging for stronger solving paradigms?
I MaxSAT solving
I constraint programming (CP)
I mixed integer programming (MIP)
I algebraic reasoning / Gröbner basis computations
I pseudo-Boolean satisfiablity and optimization

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 5/ 13



. . . Except for SAT Solving Techniques That Can’t Be Certified

I too much overhead / too complicated proof logging for
I Parity reasoning (as in CryptoMiniSat [Cry] and Lingeling [Lin])
I Counting arguments (as in Lingeling)
I Symmetry breaking (as in BreakID [Bre])

⇒ no available implementations for proof logging

I Not using these techniques ⇒ exponential loss in reasoning power / performance

I How about practical proof logging for stronger solving paradigms?
I MaxSAT solving
I constraint programming (CP)
I mixed integer programming (MIP)
I algebraic reasoning / Gröbner basis computations
I pseudo-Boolean satisfiablity and optimization

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 5/ 13



New Proof Systems on the Rise

many new proof systems with implemented proof checkers:

I propagation redundancy (PR) [HKB17]

I practical polynomial calculus (PAC) [RBK18, KFB20]

I propagation redundancy for BDDs [BB21]

I Max-SAT resolution [PCH21]

I pseudo-Boolean proofs [EGMN20, GN21]

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 6/ 13



Our Work

I general purpose proof format: pseudo-Boolean proofs (PBP)

I reference implementation of verifier: VeriPB1

I allows easy proof logging for
I reasoning with 0-1 linear inequalities (by design)
I all-different constraints [EGMN20]
I subgraph isomorphism [GMN20]
I clique and maximum common (connected) subgraph [GMM+20]
I parity reasoning [GN21]
I SAT pre- and inprocessing [GN21]

This Work (by using VeriPB)

I proof logging for translating 0-1 linear inequalities to CNF (work in progress)
so far only sequential counter [Sin05], many more encodings exist

I allows proof logging for SAT-based pseudo-Bolean solving

1https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 7/ 13

https://gitlab.com/MIAOresearch/VeriPB


System Overview

PB formula
PB to CNF
translation

SAT solver
result:

SAT / UNSAT

verifier verification
of answer

DRAT proof /
solution

pseudo-Boolean
proof

(VeriPB)

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 8/ 13



Basic Notation

Starting from

x1 + x2 + x3 ≥ 2

want to derive

x1 + s1,1 ≥ 1

x1 + s1,1 ≥ 1

x2 + s2,1 ≥ 1

s1,1 + s2,1 ≥ 1

x2 + s1,1 + s2,1 ≥ 1

x2 + s1,1 + s2,2 ≥ 1

. . .

I Boolean variable x with domain 0 (false) or 1 (true)

I Literal: x or its negation x = 1− x

I Pseudo-Boolean (PB) constraint:
linear (in-)equality over literals

I Clause: at-least-one constraint
I Proof Format:

I based on pseudo-Boolean constraints
I has operations to reason with PB constraints

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 9/ 13



Sequential Counter Encoding

High level specification:

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 10/ 13



High Level Specification

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3

I Specification is pseudo-Boolean!

I si ,j variables are fresh, i.e., not in formula

I ⇒ always OK to add these constraints

I can be derived in VeriPB proof system

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 11/ 13



High Level Specification

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3

I Specification is pseudo-Boolean!

I si ,j variables are fresh, i.e., not in formula

I ⇒ always OK to add these constraints

I can be derived in VeriPB proof system

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 11/ 13



From Specification to CNF

High Level Specification:

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3

I to enforce x1 + x2 + x3 ≥ 2 need to fix output bits s3,1, s3,2, s3,3

Add specifications together:

I only used addition of constraints

I given specification, all clauses in encoding trivial to derive (via RUP)

⇒ derivation can be expressed in VeriPB proof system

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 12/ 13



From Specification to CNF

High Level Specification:

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3

I to enforce x1 + x2 + x3 ≥ 2 need to fix output bits s3,1, s3,2, s3,3

Add specifications together:

x1 + x2 + x3 + s1,1 + s2,1 + s2,2 = s1,1 + s2,1 + s2,2 + s3,1 + s3,2 + s3,3

I only used addition of constraints

I given specification, all clauses in encoding trivial to derive (via RUP)

⇒ derivation can be expressed in VeriPB proof system

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 12/ 13



From Specification to CNF

High Level Specification:

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3

I to enforce x1 + x2 + x3 ≥ 2 need to fix output bits s3,1, s3,2, s3,3

Add specifications together:

x1 + x2 + x3 + s1,1 + s2,1 + s2,2 = s1,1 + s2,1 + s2,2 + s3,1 + s3,2 + s3,3

I only used addition of constraints

I given specification, all clauses in encoding trivial to derive (via RUP)

⇒ derivation can be expressed in VeriPB proof system

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 12/ 13



From Specification to CNF

High Level Specification:

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3

I to enforce x1 + x2 + x3 ≥ 2 need to fix output bits s3,1, s3,2, s3,3

Add specifications together:

2 ≤

x1 + x2 + x3 = s3,1 + s3,2 + s3,3

I only used addition of constraints

I given specification, all clauses in encoding trivial to derive (via RUP)

⇒ derivation can be expressed in VeriPB proof system

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 12/ 13



From Specification to CNF

High Level Specification:

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3

I to enforce x1 + x2 + x3 ≥ 2 need to fix output bits s3,1, s3,2, s3,3

Add specifications together:

2 ≤ x1 + x2 + x3 = s3,1 + s3,2 + s3,3

I only used addition of constraints

I given specification, all clauses in encoding trivial to derive (via RUP)

⇒ derivation can be expressed in VeriPB proof system

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 12/ 13



From Specification to CNF

High Level Specification:

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3

I to enforce x1 + x2 + x3 ≥ 2 need to fix output bits s3,1, s3,2, s3,3

Add specifications together:

2 ≤ x1 + x2 + x3 = s3,1 + s3,2 + s3,3

I only used addition of constraints

I given specification, all clauses in encoding trivial to derive (via RUP)

⇒ derivation can be expressed in VeriPB proof system

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 12/ 13



From Specification to CNF

High Level Specification:

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3

I to enforce x1 + x2 + x3 ≥ 2 need to fix output bits s3,1, s3,2, s3,3

Add specifications together:

2 ≤ x1 + x2 + x3 = s3,1 + s3,2 + s3,3

I only used addition of constraints

I given specification, all clauses in encoding trivial to derive (via RUP)

⇒ derivation can be expressed in VeriPB proof system

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 12/ 13



From Specification to CNF

High Level Specification:

Block 1: x1 = s1,1

Block 2: x2 + s1,1 = s2,1 + s2,2 s2,1 ≥ s2,2

Block 3: x3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 s3,1 ≥ s3,2 ≥ s3,3

I to enforce x1 + x2 + x3 ≥ 2 need to fix output bits s3,1, s3,2, s3,3

Add specifications together:

2 ≤ x1 + x2 + x3 = s3,1 + s3,2 + s3,3

I only used addition of constraints

I given specification, all clauses in encoding trivial to derive (via RUP)

⇒ derivation can be expressed in VeriPB proof system

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 12/ 13



Conclusion

I proof logging is well-established standard for SAT solving

I so far, not applicable to stronger paradigms

Our work: Proof logging translating 0-1 linear inequalities to CNF with VeriPB2

I allows proof logging for SAT based pseudo-Boolean solving

Future work:

I provide efficient proof logging also for optimization
(pseudo-Boolean optimization, MaxSAT, MIP)

I express MaxSAT techniques (e.g. core guided search, MaxHS) in PB language

I new expressive proof formats and verifiers for competitions
(why not with VeriPB ;-) )

2

https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 13/ 13

https://gitlab.com/MIAOresearch/VeriPB


Conclusion

I proof logging is well-established standard for SAT solving

I so far, not applicable to stronger paradigms

Our work: Proof logging translating 0-1 linear inequalities to CNF with VeriPB2

I allows proof logging for SAT based pseudo-Boolean solving

Future work:

I provide efficient proof logging also for optimization
(pseudo-Boolean optimization, MaxSAT, MIP)

I express MaxSAT techniques (e.g. core guided search, MaxHS) in PB language

I new expressive proof formats and verifiers for competitions
(why not with VeriPB ;-) )

2https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 13/ 13

https://gitlab.com/MIAOresearch/VeriPB


Conclusion

I proof logging is well-established standard for SAT solving

I so far, not applicable to stronger paradigms

Our work: Proof logging translating 0-1 linear inequalities to CNF with VeriPB2

I allows proof logging for SAT based pseudo-Boolean solving

Future work:

I provide efficient proof logging also for optimization
(pseudo-Boolean optimization, MaxSAT, MIP)

I express MaxSAT techniques (e.g. core guided search, MaxHS) in PB language

I new expressive proof formats and verifiers for competitions
(why not with VeriPB ;-) )

2https://gitlab.com/MIAOresearch/VeriPB

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 13/ 13

https://gitlab.com/MIAOresearch/VeriPB


References I

[BB21] Lee A. Barnett and Armin Biere.
Non-clausal redundancy properties.
In Proceedings of the 28th International Conference on Automated Deduction (CADE-28), page
to appear, 2021.

[Bie06] Armin Biere.
Tracecheck.
http://fmv.jku.at/tracecheck/, 2006.

[Bre] BreakID.
https://bitbucket.org/krr/breakid/src/master/.

[CFHH+17] Lúıs Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt, Matt Kaufmann, and Peter
Schneider-Kamp.
Efficient certified rat verification.
In Leonardo de Moura, editor, Automated Deduction – CADE 26, pages 220–236, Cham, 2017.
Springer International Publishing.

[CFMSSK17] Lúıs Cruz-Filipe, Joao Marques-Silva, and Peter Schneider-Kamp.
Efficient certified resolution proof checking.
In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 118–135. Springer Berlin Heidelberg, 2017.

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 1/ 4

http://fmv.jku.at/tracecheck/
https://bitbucket.org/krr/breakid/src/master/


References II

[Cry] CryptoMiniSat.
https://github.com/msoos/cryptominisat/.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Justifying all differences using pseudo-boolean reasoning.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence. To appear, 2020.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James
Trimble.
Certifying solvers for clique and maximum common (connected) subgraph problems.
In Helmut Simonis, editor, Principles and Practice of Constraint Programming - 26th International
Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020, Proceedings, volume
12333 of Lecture Notes in Computer Science, pages 338–357. Springer, 2020.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Subgraph isomorphism meets cutting planes: Solving with certified solutions.
In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI ’20),
July 2020. To appear, 2020.

[GN03] Evguenii I. Goldberg and Yakov Novikov.
Verification of proofs of unsatisfiability for CNF formulas.
In Design, Automation and Test in Europe Conference (DATE), pages 10886–10891. IEEE
Computer Society, 2003.

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 2/ 4

https://github.com/msoos/cryptominisat/


References III

[GN21] Stephan Gocht and Jakob Nordström.
Certifying parity reasoning efficiently using pseudo-Boolean proofs.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, 2021.
To appear.

[HKB17] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere.
Short proofs without new variables.
In Leonardo de Moura, editor, Automated Deduction - CADE 26 - 26th International Conference
on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings, volume 10395
of Lecture Notes in Computer Science, pages 130–147. Springer, 2017.

[KFB20] Daniela Kaufmann, Mathias Fleury, and Armin Biere.
The proof checkers pacheck and pastÃ¨que for the practical algebraic calculus.
In Ofer Strichman and Alexander Ivrii, editors, Formal Methods in Computer-Aided Design,
FMCAD 2020., volume 1, pages 264–269. TU Vienna Academic Press, 2020.

[Lin] Lingeling, Plingeling and Treengeling.
http://fmv.jku.at/lingeling/.

[PCH21] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet.
A proof builder for max-sat.
In Chu-Min Li and Felip Manyà, editors, Theory and Applications of Satisfiability Testing – SAT
2021, pages 488–498, Cham, 2021. Springer International Publishing.

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 3/ 4

http://fmv.jku.at/lingeling/


References IV

[RBK18] Daniela Ritirc, Armin Biere, and Manuel Kauers.
A practical polynomial calculus for arithmetic circuit verification.
In Anna M. Bigatti and Martin Brain, editors, 3rd International Workshop on Satisfiability
Checking and Symbolic Computation (SC2’18), pages 61–76. CEUR-WS, 2018.

[Sin05] Carsten Sinz.
Towards an optimal CNF encoding of boolean cardinality constraints.
In Peter van Beek, editor, Principles and Practice of Constraint Programming - CP 2005, 11th
International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings, volume 3709
of Lecture Notes in Computer Science, pages 827–831. Springer, 2005.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr.
DRAT-trim: Efficient checking and trimming using expressive clausal proofs.
In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,
July 2014.

Stephan Gocht — stephan.gocht@cs.lth.se Certifing PB to CNF 4/ 4


	Appendix

