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Visualizing CDCL

CDCL solvers crucially use heuristics for, e.g.:

I Variable decisions.

I Clause database management.

I Restarts.

Heuristics often work very well.

Limited understanding of why.

This presentation: tool for visualizing CDCL heuristics (so far on
crafted benchmarks)
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Visualizing CDCL: decision heuristic

Classic decision heuristic: variable with highest VSIDS
score [MMZ+01]

If variable v was active in conflicts t1, . . . , tk and T conflicts have
passed,

activity(v) =
∑

1≤i≤k
αT−ti

α decay factor 1/2 ≤ α < 1. (default 0.95)

Phase saving [PD07]: Set variable to the polarity (phase) it was
last propagated to.
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Visualizing VSIDS scores

I Project arose out of understanding how CDCL solves tricky
combinatorial benchmarks.

I By visualizing aspects of proof search (VSIDS, phase) we try
to understand CDCL.

I Crafted benchmarks often defined in terms of graphs or
matrices.
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Visualizing VSIDS scores

Brighter color = higher score

I Runs during CDCL execution.

I Refreshes every 100 conflicts.∗

I At most 25 “frames”/second.∗

∗numbers can be changed
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How to implement your own visualization

Visualizer written in Qt framework.

I Before the solver starts running, a method is called to draw
shapes on the grid.
Each shape = a variable.
In this method you can draw your own visualization.

I With each new frame, a method
draw vsids(vector<double> scores) is called.
Gives shapes colors corresponding to VSIDS scores.
Can be overridden to define custom color scheme.
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Smoothing of VSIDS animation

CDCL VSIDS scores can change quickly: becomes a blur.

I Use exponential moving average on VSIDS scores:

expAverage(v)t =
∑

∆t≥0

α∆tactivity(v)t−∆t

set α to say 0.99.

activity(v)t are VSIDS scores (= exponential averages)
themselves

I Visualizer reads VSIDS scores from solver.

I Visualize frames every 100 conflicts.
However, want average over all conflicts
Cannot read full VSIDS scores after every conflict.
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Smoothing of VSIDS animation

Our implementation: let solver maintain 2 VSIDS scores: standard
and more slowly decaying.

Mathematical guarantee:

Theorem
Exponential average with parameter dslow over decay d VSIDS is a
linear combination of decay d VSIDS and decay dslow VSIDS.

⇒ slower decay factor approximates exponential moving average.
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Phase VSIDS

Similar problem with phases. Can apply same VSIDS idea. For
0 < α < 1, one can define

vsidsPhase(v)t = (1− α)phase(v)t + α · vsidsPhase(v)t−1

where false = −1, true = 1.
Only for visualization purposes currently.

9 / 16



Integration in CDCL solver

Communication via text streams on stdin / stdout

I Add a command line parameter “interactive” to the solver.

I Add a method interactive() to the solver.
Idea:

1. read #conflicts to run
2. run solver for this many conflicts
3. output frame:

I The secondary VSIDS scores, normalized to [0, 1].
I Phases mapped to interval [−1.0, 1.0] (−1 = false, 1 = true).
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Demo

1. VSIDS:

(a) Ordering principle
(b) Flow formula

2. Phase:

(a) Pebbling formula with XOR
(b) Pigeonhole principle
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Demo 1a: ordering principle

A formula with variables xi ,j for each 1 ≤ i 6= j ≤ n corresponding
to edges of a complete graph.
Super easy in theory.
Hard for CDCL if VSIDS decay factor too high (too close to 1).

Clause deletion causes VSIDS resets, not restarts.
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Demo 1b: flow formula with high distortion

Formula defined on an undirected graph.
Super easy in theory.
Variables xu,v for all directed edges (u, v).
Constraints (N(u) are neighbours of vertex u):

∀u :
∑

v∈N(u)

xu,v − xv ,u = 1

Phenomenon observed: VSIDS “freezes” on some instances.
Sample graph is 6-regular random graph on 500 nodes.
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Demo 2a: pebbling formula with XOR
A formula defined on a single-sink DAG with indegree 2.
Super easy in theory.

1 2 3

4 5

6

Two variables per vertex: xu,1 and xu,2. Constraints:

I xu,1 ⊕ xu,2 = 1 for u a source.

I xu,1 ⊕ xu,2 = 0 for u the sink.

I If u has predecessors v ,w ,
((xv ,1 ⊕ xv ,2 = 1) ∧ (xw ,1 ⊕ xw ,2 = 1))→ (xu,1 ⊕ xu,2 = 1)

Visualize phase(xu) := phase(xu,1) · phase(xu,2) for all vertices u.
(remember phase ∈ {−1, 1} without phase VSIDS)
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Demo 2b: pigeonhole principle

Formula claims that n pigeons do not fit into n − 1 holes.
Variables xi ,j for 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1.
We run CDCL without restarts, and with and without phase
VSIDS.
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Conclusion

What is already implemented:

I Various visualizations for studying combinatorial formulas.

I Interactive version of Minisat for use with the visualizer.

What a user could add:

I Additional visualizations.

I Interactive versions of other CDCL SAT solvers.

The software is available on Github:
github.com/elffersj/cdcl-visualizer
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