Visualizing CDCL VSIDS and phase values

Jan Elffers

KTH Royal Institute of Technology

July 8, 2019

Joint work with Jakob Nordström
CDCL solvers crucially use heuristics for, e.g.:

- Variable decisions.
- Clause database management.
- Restarts.
CDCL solvers crucially use heuristics for, e.g.:

- Variable decisions.
- Clause database management.
- Restarts.

Heuristics often work very well.

Limited understanding of why.

This presentation: tool for visualizing CDCL heuristics (so far on crafted benchmarks)
Classic decision heuristic: variable with highest VSIDS score [MMZ+01]

If variable \(v \) was active in conflicts \(t_1, \ldots, t_k \) and \(T \) conflicts have passed,

\[
activity(v) = \sum_{1 \leq i \leq k} \alpha^{T-t_i}
\]

\(\alpha \) decay factor \(1/2 \leq \alpha < 1. \) (default 0.95)

Phase saving [PD07]: Set variable to the polarity (phase) it was last propagated to.
Visualizing VSIDS scores

- Project arose out of understanding how CDCL solves tricky combinatorial benchmarks.
- By visualizing aspects of proof search (VSIDS, phase) we try to understand CDCL.
- Crafted benchmarks often defined in terms of graphs or matrices.
Visualizing VSIDS scores

- Brighter color = higher score
- Runs during CDCL execution.
- Refreshes every 100 conflicts.*
- At most 25 “frames”/second.*

*numbers can be changed
How to implement your own visualization

Visualizer written in Qt framework.
 ▶ Before the solver starts running, a method is called to draw shapes on the grid.
 Each shape = a variable.
 In this method you can draw your own visualization.
 ▶ With each new frame, a method draw_vsids(vector<double> scores) is called.
 Gives shapes colors corresponding to VSIDS scores.
 Can be overridden to define custom color scheme.
Smoothing of VSIDS animation

CDCL VSIDS scores can change quickly: becomes a blur.

- Use exponential moving average on VSIDS scores:

\[\text{expAverage}(v)_t = \sum_{\Delta t \geq 0} \alpha^{\Delta t} \text{activity}(v)_{t-\Delta t} \]

set \(\alpha \) to say 0.99.

\(\text{activity}(v)_t \) are VSIDS scores (= exponential averages) themselves

- Visualizer reads VSIDS scores from solver.

- Visualize frames every 100 conflicts.

However, want average over all conflicts

Cannot read full VSIDS scores after every conflict.
Our implementation: let solver maintain 2 VSIDS scores: standard and more slowly decaying.

Mathematical guarantee:

Theorem

Exponential average with parameter d_{slow} over decay d VSIDS is a linear combination of decay d VSIDS and decay d_{slow} VSIDS.

\Rightarrow slower decay factor approximates exponential moving average.
Phase VSIDS

Similar problem with phases. Can apply same VSIDS idea. For $0 < \alpha < 1$, one can define

$$\text{vsidsPhase}(v)_t = (1 - \alpha) \text{phase}(v)_t + \alpha \cdot \text{vsidsPhase}(v)_{t-1}$$

where false $= -1$, true $= 1$.
Only for visualization purposes currently.
Integration in CDCL solver

Communication via text streams on stdin / stdout

- Add a command line parameter “interactive” to the solver.
- Add a method `interactive()` to the solver.

Idea:

1. read #conflicts to run
2. run solver for this many conflicts
3. output `frame`:
 - The secondary VSIDS scores, normalized to [0, 1].
 - Phases mapped to interval [−1.0, 1.0] (−1 = false, 1 = true).
1. VSIDS:
 (a) Ordering principle
 (b) Flow formula
2. Phase:
 (a) Pebbling formula with XOR
 (b) Pigeonhole principle
Demo 1a: ordering principle

A formula with variables $x_{i,j}$ for each $1 \leq i \neq j \leq n$ corresponding to edges of a complete graph.
Super easy in theory.
Hard for CDCL if VSIDS decay factor too high (too close to 1).

Clause deletion causes VSIDS resets, not restarts.
Formula defined on an undirected graph.
Super easy in theory.
Variables \(x_{u,v} \) for all directed edges \((u, v)\).
Constraints (\(N(u) \) are neighbours of vertex \(u \)):

\[
\forall u : \sum_{v \in N(u)} x_{u,v} - x_{v,u} = 1
\]

Phenomenon observed: VSIDS “freezes” on some instances.
Sample graph is 6-regular random graph on 500 nodes.
Demo 2a: pebbling formula with XOR

A formula defined on a single-sink DAG with indegree 2.
Super easy in theory.

Two variables per vertex: $x_{u,1}$ and $x_{u,2}$. Constraints:

- $x_{u,1} \oplus x_{u,2} = 1$ for u a source.
- $x_{u,1} \oplus x_{u,2} = 0$ for u the sink.
- If u has predecessors v, w,

$$((x_{v,1} \oplus x_{v,2} = 1) \land (x_{w,1} \oplus x_{w,2} = 1)) \rightarrow (x_{u,1} \oplus x_{u,2} = 1)$$

Visualize $\text{phase}(x_u) := \text{phase}(x_{u,1}) \cdot \text{phase}(x_{u,2})$ for all vertices u.
(remember $\text{phase} \in \{-1, 1\}$ without phase VSIDS)
Demo 2b: pigeonhole principle

Formula claims that n pigeons do not fit into $n - 1$ holes. Variables $x_{i,j}$ for $1 \leq i \leq n$, $1 \leq j \leq n - 1$. We run CDCL without restarts, and with and without phase VSIDS.
Conclusion

What is already implemented:
- Various visualizations for studying combinatorial formulas.
- Interactive version of Minisat for use with the visualizer.

What a user could add:
- Additional visualizations.
- Interactive versions of other CDCL SAT solvers.

The software is available on Github:
github.com/elffersj/cdcl-visualizer
Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver.

Knot Pipatsrisawat and Adnan Darwiche.
A lightweight component caching scheme for satisfiability solvers.