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The Problem

I pseudo-Boolean (PB) constraints, i.e. {0, 1}-linear inequalities

I use x = (1− x), allows us to have no negative coefficients

Example:

h1 + h2 + x1 + x2 ≥ 1

h1 + x2 + x3 ≥ 2

h2 + x1 + x3 ≥ 2

x1 + x2 + x3 ≥ 2

Want to answer:

I Is there a satisfying solution?

No 0-1 solution.

I How hard is it to show that there is no solution? It depends...
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Solving Pseudo-Boolean Problems

I NP-hard ⇒ can’t expect efficient solution in general

I there are multiple approaches for solving PB problems
I our work focuses on PB solvers, i.e., algorithms...

I similar to conflict-driven clause learning (CDCL) SAT solvers
I using PB constraints to analyse conflicts
I in practice worse than known theoretic limitations

I goal: understand power of reasoning

This work:

I study so called saturation rule and division rule

I as used in PB solvers

I show that they are incomparable
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Cutting Planes in PB Solvers

Literal Axioms

x ≥ 0 x ≥ 0

Generalized Resolution
(positive linear combination eliminating variable)

h1 + h2 + x1 + x2 ≥ 1 h1 + x1 + x3 ≥ 2

h1 + h1︸ ︷︷ ︸
=h1+1−h1

+h2 + 2x1 + x2 + x3 ≥ 3
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Cutting Planes in PB Solvers — Boolean Rule

Division (divide and round up coefficients and right hand side)
used in [EN18]

x1 + 2x2 + 2x3 ≥ 3
Divide by 2

x1 + x2 + x3 ≥ 2

or
Saturation (reduce to min of coefficient and right hand side)

used in [DG02, CK05, SS06, LP10]

6x + 3y + z1 + z2 ≥ 3
3x + 3y + z1 + z2 ≥ 3

How do these rules compare?

I Is one of them strictly better?

I Or are they incomparable?
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Cutting Planes — Example

h1 + h2 + x1 + x2 ≥ 1 h1 + x1 + x3 ≥ 2

h2 + 2x1 + x2 + x3 ≥ 2

h2 + x2 + x3 ≥ 2

2x1 + 2x2 + 2x3 ≥ 3
x1 + x2 + x3 ≥ 2

x1 + x2 + x3 ≥ 2

0 ≥ 1
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Is division stronger than saturation?

I generalized resolution can derive (4)

I division can derive (5)

I saturation does not change (4)

h1+h2+ x1+ x2 ≥ 1 (1)

h1+ x2+ x3≥ 2 (2)

h2+ x1+ x3≥ 2 (3)

2x1+2x2+2x3≥ 3 (4)

x1+ x2+ x3≥ 2 (5)
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h1+h2+ x1+ x2 ≥ 1 (1)

h1+ x2+ x3≥ 2 (2)

h2+ x1+ x3≥ 2 (3)

2x1+2x2+2x3≥ 3 (4)

x1+ x2+ x3≥ 2 (5)

there are formulas that...

I contain constraints similar to (1)-(3)

I are unsatisfiable

I showing unsatisfiability using generalized resolution and. . .

I saturation requires an exponential number of steps
I division can be done in a linear number of steps
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arbitrary positive linear combination



Difference to [VEGC+18]

I [VEGC+18] does not apply to generalized resolution

I problem: PB solver do use generalized resolution
⇒ used formula [MN14] is always hard for PB solver
(no matter if saturation or division is used)

I we modify formula to allow generalized resolution
(via helper variables h1, h2, . . . )

I we show that generalized resolution and. . .
I saturation still requires an exponential number of steps
I division can now derive UNSAT in a linear number of steps
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Practical Experiments: Division Stronger Than Saturation

I saturation based solvers are guaranteed to run slow
I can division based solvers show unsatisfiability fast?

I yes, but sensitive to other settings
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Crafted Formulas Easy for Division
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Is saturation stronger than division?

Rx+Ry+
R∑
i=1

zi ≥ R (6)

Rx+Ry+
2R∑

i=R+1

zi ≥ R (7)

2Rx +
2R∑
i=1

zi ≥ R (8)

Rx +
2R∑
i=1

zi ≥ R (9)

I generalized resolution can derive (8)

I saturation can derive (9) in one step

I division can derive (9), but requires at least
√
R steps
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Proof Sketch: Define Suitable Potential Function

P(ax + by + b′y +
∑

cizi ≥ A) := ln ((2a + b + b′)/A)

Examples:

P(Cstart) := P(Rx + Ry +
R∑
i=1

zi ≥ R) = ln (3R/R) = ln (3)

P(Cend) := P(Rx +
2R∑
i=1

zi ≥ R) = ln (2R/R) = ln (2)

Important properties:

I needs to change:
P(Cstart)− P(Cend) ≥ 1/6

I doesn’t change with generalized resolution:
P(C1 ⊕ C2) ≥ min{P(C1),P(C2)}

I division only changes P by a small amount:
P(C/k) ≥ P(C )− 1/

√
R
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Conclusion

I division can be provably stronger than saturation

I saturation can be provably stronger than division
(for deriving specific constraint)

Future Research Directions

I division rule and saturation rule seem incomparable
⇒ implement adaptive choice between division and saturation

I practical results sensitive to other settings
⇒ better understanding of implementation choices desirable

I for some problems mixed integer programming is more efficient
⇒ try to use the best from both worlds

Thank you for your attention!
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