Learned Clause Minimization in Parallel SAT Solvers

Pragmatics of SAT 2019

Marc Hartung, Florian Schintke
1. Background
2. Parallel Clause Minimization
3. Experiments
4. Conclusion
Background
(Learned) Clause Minimization in SC18

<table>
<thead>
<tr>
<th>Solver</th>
<th>Author</th>
<th>CM/LMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapleLCMDistChronoBT</td>
<td>Ryvchin et al.</td>
<td>✔</td>
</tr>
<tr>
<td>Maple_LCM_Scavel_fix2</td>
<td>Xu et al.</td>
<td>✔</td>
</tr>
<tr>
<td>Maple_CM</td>
<td>Luo et al.</td>
<td>✔</td>
</tr>
<tr>
<td>cms55-main-all4fixed</td>
<td>M. Soos</td>
<td>✔</td>
</tr>
<tr>
<td>Maple_CM_ordUIP</td>
<td>Luo et al.</td>
<td>✔</td>
</tr>
<tr>
<td>Maple_CM_Dist</td>
<td>Luo et al.</td>
<td>✔</td>
</tr>
<tr>
<td>cms55-main-all4fixed</td>
<td>M. Soos</td>
<td>✔</td>
</tr>
<tr>
<td>Maple_CM_ordUIP+</td>
<td>Luo et al.</td>
<td>✔</td>
</tr>
<tr>
<td>Maple_LCM_Scavel_200_fix2</td>
<td>Xu et al.</td>
<td>✔</td>
</tr>
<tr>
<td>cms55-main-all4fixed</td>
<td>M. Soos</td>
<td>✔</td>
</tr>
</tbody>
</table>

Success was not transferred to parallel

Top10 Main Track

<table>
<thead>
<tr>
<th>Solver</th>
<th>Author</th>
<th>CM/LMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm5s55-main-all4fixed</td>
<td>M. Soos</td>
<td>✔</td>
</tr>
</tbody>
</table>

Top10 Parallel Track

<table>
<thead>
<tr>
<th>Solver</th>
<th>Author</th>
<th>CM/LMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm5s55-parallel, 12 core</td>
<td>M. Soos</td>
<td>✔</td>
</tr>
<tr>
<td>cbpenelope</td>
<td>T. Sonobe</td>
<td>✘</td>
</tr>
<tr>
<td>ccpenelope</td>
<td>T. Sonobe</td>
<td>✘</td>
</tr>
<tr>
<td>syrup, 24 threads</td>
<td>Audemard et al.</td>
<td>✔</td>
</tr>
<tr>
<td>penelope_MDLC</td>
<td>Konan Tchinda et al.</td>
<td>✘</td>
</tr>
<tr>
<td>treengeling</td>
<td>A. Biere</td>
<td>✘</td>
</tr>
<tr>
<td>scalope</td>
<td>Konan Tchinda et al.</td>
<td>✘</td>
</tr>
</tbody>
</table>

Success was not transferred to parallel.
(Learned) Clause Minimization (LCM)

- Applied at decision level zero

After propagating $\neg l_1, \neg l_2, \ldots, \neg l_i$:

Case 1:
- l_j propagated to true
- C replaced by $l_1 \lor l_2 \lor \ldots \lor l_i \lor l_j$

Case 2:
- l_i propagated to false
- C replaced by $l_1 \lor l_2 \lor \ldots \lor l_i$

Case 3:
- Conflict detected
- C replaced by $l_1 \lor l_2 \lor \ldots \lor l_i$

- In this presentation: Minimization ≡ Distillation/Vivification
LMC Approach [3]

Only apply CM to (in future) kept learned clauses

• Each clause minimized only once
• Reduction heuristic specifies which are kept
• Reduction example Glucose:

- Low LBD, higher activity → keep and minimize
- High LBD, lower activity → remove

Minimization triggered after a restart or decision tree is stashed
Parallel Clause Minimization
Heterogeneous vs. Homogenous

Heterogeneous minimization approach

Dedicate individual threads to minimization

- Examples:
 - CDCL solvers + One minimization thread [4][5]
 - Only part of solvers use minimization [6]

- Problems:
 - Not trivial for many cores
 - Introduces load balancing problem
 - Adds more magic parameters

- Finding good parameters expensive

→ Discarded for future work
Heterogeneous vs. Homogenous

Homogenous minimization approach

- All solvers use same minimization approach
- Example: Minimize export clauses [7]
- Problems:
 - Balance minimization and BCP
 - How and if minimizations should be shared
PCM – Private Clause Minimization

- Directly apply LCM approach
- Export and CM are independent
- No intentional sharing of minimizations
- Using lazy export policy: Minimized clauses might be shared

Implementation:
- LBD (≤ 5) cut
- Original version (no LBD cut) decreased performance
- Lazy export policy (two times used)
LPCM – Linked Private Clause Minimization

- Shared clauses are linked
- Minimizations shared via link

Implementation:
- LBD (≤ 5) cut
 - Clause header contains pointer to memory chunk
 - If minimized, chunk contains new clause
ECM – Export Clause Minimization

- Enforce minimization before export
- Already used in TopoSAT2[7]

Implementation:
- Lazy export policy (two times used)
- LBD (≤ 3 or ≤ 4) and length (≤ 30) cut
- Marked clauses are protected during reduction
Experiments
Test Set and Environment

- SAT competition ‘16 application track, ’17 and ‘18 main track
- On Intel Xeon Phi 7250, 68 cores at 1.4 GHz with 96 GB RAM
- Maximum walltime of 15000 seconds
- Maximal 34 threads per solver
- Restrictions due to CPU frequency, cache and main memory
Vivification Overhead

SAT

- Propagation Overhead:
 - \((L)PCM \approx 10\%\)
 - ECM3 \approx 1\%
 - ECM4 \approx 4\%
 - on average

- Minimization success correlates with overhead:
 - \((L)PCM \approx 40\%\)
 - ECM3 \approx 6\%
 - ECM4 \approx 32\%
 - on average

UNSAT
Syrup Runtime SAT

PCM increases SAT performance

Improvement to Syrup small for easy instances

Solved instances:
- Syrup: 333
- PCM: 343
- LPCM: 331
- ECM3: 326
- ECM4: 302
Syrup Runtime UNSAT

- ECM increases overall UNSAT performance
- PCM, LPCM and ECM3 improve performance
Parallel CM Solver

TopoSAT2 – ECM

- Glucose 3.0 based ECM solver
- Direct clause export
- Copies of clauses are minimized and exported
 → Minimizations are not used by minimizing solver

Sticky – LPCM, ECM

- Glucose 4.0 based solver with physical clause sharing
- No copy-sharing of clauses, only references are shared
- Adapted lazy clause sharing heuristic
SAT Competition Results

Results SC’16 (application track), SC’17, SC’18 (main track)

- Overall increase through nearly every CM approach
- Syrup-PCM nearly closed gap to Toposat2
- LPCM and ECM3 decrease SAT but increase solved UNSAT instances more
- TopoSAT2-ECM3 decrease:
 - No lazy export \rightarrow missing activity filter for export \rightarrow higher overhead
 - Minimizations not inserted in minimizing solver

<table>
<thead>
<tr>
<th>Solver</th>
<th>SAT</th>
<th>UNSAT</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syrup</td>
<td>333</td>
<td>347</td>
<td>680</td>
</tr>
<tr>
<td>Syrup-PCM</td>
<td>343</td>
<td>355</td>
<td>698</td>
</tr>
<tr>
<td>Syrup-LPCM</td>
<td>331</td>
<td>355</td>
<td>686</td>
</tr>
<tr>
<td>Syrup-ECM3</td>
<td>326</td>
<td>367</td>
<td>693</td>
</tr>
<tr>
<td>Syrup-ECM4</td>
<td>303</td>
<td>320</td>
<td>623</td>
</tr>
<tr>
<td>Sticky</td>
<td>303</td>
<td>307</td>
<td>610</td>
</tr>
<tr>
<td>Sticky-LPCM</td>
<td>298</td>
<td>333</td>
<td>631</td>
</tr>
<tr>
<td>Sticky-ECM3</td>
<td>296</td>
<td>333</td>
<td>629</td>
</tr>
<tr>
<td>TopoSAT2</td>
<td>357</td>
<td>344</td>
<td>701</td>
</tr>
<tr>
<td>TopoSAT2-ECM3</td>
<td>353</td>
<td>326</td>
<td>679</td>
</tr>
</tbody>
</table>
SAT Competition Results

Single Competition Results

<table>
<thead>
<tr>
<th>Solver</th>
<th>SAT’16A</th>
<th>SAT’17</th>
<th>SAT’18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAT</td>
<td>UNSAT</td>
<td>ALL</td>
</tr>
<tr>
<td>Syrup</td>
<td>77</td>
<td>113</td>
<td>190</td>
</tr>
<tr>
<td>Syrup-PCM</td>
<td>78</td>
<td>115</td>
<td>193</td>
</tr>
<tr>
<td>Syrup-LPCM</td>
<td>77</td>
<td>116</td>
<td>193</td>
</tr>
<tr>
<td>Syrup-ECM3</td>
<td>76</td>
<td>122</td>
<td>198</td>
</tr>
<tr>
<td>Syrup-ECM4</td>
<td>72</td>
<td>108</td>
<td>180</td>
</tr>
<tr>
<td>Sticky</td>
<td>63</td>
<td>93</td>
<td>156</td>
</tr>
<tr>
<td>Sticky-LPCM</td>
<td>68</td>
<td>104</td>
<td>172</td>
</tr>
<tr>
<td>Sticky-ECM3</td>
<td>66</td>
<td>102</td>
<td>168</td>
</tr>
<tr>
<td>TopoSAT2</td>
<td>80</td>
<td>116</td>
<td>196</td>
</tr>
<tr>
<td>TopoSAT2-ECM3</td>
<td>75</td>
<td>109</td>
<td>184</td>
</tr>
</tbody>
</table>

Syrup-PCM wins on SC’18 application track benchmarks

Syrup-ECM3 wins on SC’16 application track benchmarks

No real improvement on SC’17 benchmarks
Conclusion

- Homogeneous CM applicable for parallel solvers
 → Approaches solved 6 – 21 additional instances
- Sharing minimizations via link has no advantage
 → LPCM fewer solved instances than PCM
- More restrictive clause selection than in serial
 → ECM4 and TopoSAT2-ECM slow down
 → PCM/LPCM only succeed with LBD cut
- Prioritize:
 - Activity-based selection for SAT (PCM)
 - LBD-based selection for UNSAT (ECM)
References

Questions?

Marc Hartung
Parallel and Distributed Computing
Zuse Institute Berlin (ZIB)
hartung@zib.de