gpusat2 – An Improved GPU Model Counter

Johannes K. Fichte1 Markus Hecher2,3 Markus Zisser2

1 TU Dresden, Germany
2 TU Wien, Austria
3 University of Potsdam, Germany

Pragmatics of SAT (POS) Workshop 2019, Lisbon, Portugal

July 8, 2019
Motivation

Model Counting (#SAT)

- Generalizes Boolean satisfiability problem (SAT)
- #SAT: output the number of satisfying assignments
- WMC: output the weighted model count
- Various applications in AI and reasoning, e.g.,
 - Bayesian reasoning [Sang et al.’05]
 - Learning preference distributions [Choi et al.’15]
 - Infrastructure reliability [Meel et al.17]
- Computational complexity: #P-hard [Roth’96]
Motivation: A somewhat different approach.

#SAT/WMC Solving
- There are already plenty solvers based on various techniques:
 - approximate (Meel) / CDCL (Baccus/Thurley) /
 - knowledge compilation based (Darwiche et al.)

Parameterized Algorithms
- Lots of theoretical work over last 20 years and various algorithms for #SAT

Research Question
Are (theoretical) algorithms from parameterized complexity even useful for implementations in #SAT/WMC solving?
Motivation: A somewhat different approach.

#SAT/WMC Solving
- There are already plenty solvers based on various techniques: approximate (Meel) / CDCL (Baccus/Thurley) / knowledge compilation based (Darwiche et al.)

Parameterized Algorithms
- Lots of theoretical work over last 20 years and various algorithms for #SAT

Research Question
Are (theoretical) algorithms from parameterized complexity even useful for implementations in #SAT/WMC solving?
Parameterized Algorithmics

Topic of the Talk

Solve \#SAT/WMC by means of an implementation of a parameterized algorithm that explicitly exploits small treewidth.

Presentation:

1. Ideas towards a GPU model counter [FHWoltranZ'18]
2. Improved Architecture for \#SAT (POS paper [FHZ'19])

Purpose:

There are other architectures out there and it might fit for certain algorithms. NOT: outperforming everything else.
Parameterized Algorithmics

Topic of the Talk

Solve \#SAT/WMC by means of an implementation of a parameterized algorithm that \textit{explicitly} exploits small treewidth.

Presentation:

1. Ideas towards a GPU model counter \cite{FHWolftranZ18}
2. Improved Architecture for \#SAT (POS paper \cite{FHZ19})

Purpose:

There are other architectures out there and it might fit for certain algorithms. NOT: outperforming everything else.
Parameterized Algorithmics

Topic of the Talk

Solve #SAT/WMC by means of an implementation of a parameterized algorithm that **explicitly** exploits small treewidth.

Presentation:

1. Ideas towards a GPU model counter [FHWoltranZ’18]
2. Improved Architecture for #SAT (POS paper [FHZ’19])

Purpose:

There are other architectures out there and it might fit for certain algorithms. **NOT:** outperforming everything else.
Tree Decompositions

Definition & Example

- Most prominent graph invariant
- Small treewidth indicates tree-likeness and sparsity
- Can be used to solve $\#\text{SAT}/WMC$ by defining graph representations of the input formula
Tree Decompositions

Treewidth

- Treewidth defined in terms of tree decompositions (TD)
- TD: arrangement of graph into a tree + bags s.t. ...
- Treewidth: width of a TD of smallest width
Tree Decompositions

Treewidth

- Treewidth defined in terms of tree decompositions (TD)
- TD: arrangement of graph into a tree + bags s.t. ...
- Treewidth: width of a TD of smallest width
Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. Each vertex must occur in some bag
2. For each edge, there is a bag containing both endpoints
3. Connected: If vertex \(v \) appears in bags of nodes \(t_0 \) and \(t_1 \), then \(v \) is also in the bag of each node on the path between \(t_0 \) and \(t_1 \).

Tree Decomposition \(\mathcal{T} \) of \(G \):

- \(G : x \quad a \quad c \quad b \quad c \quad y \)
- \(\mathcal{T} : b, c \quad b, c \quad b, c, y \quad b, x, c \quad b, x, a \)

Width:

\[\text{width} = \max \{ \text{size of bags} \} \]
1. Build graph G of F
2. Create TD \mathcal{T} of G
3. Dynamic Programming
 - Store results in table τ_t
 - Apply A to F_t
 - done? no
 - Visit next node t of \mathcal{T} in post-order
 - yes
4. Output count

Part:
A) Background & Basic Concepts
 - Treewidth, Graph Representation (1) + Dynamic Programming (3) [Samer & Szeider JDA’10]
B) Finding TDs (2)
C) Dynamic Programming (3) on the GPU
Outline (Basic Architecture)

1. Build graph \(G \) of \(F \)
2. Create TD \(\mathcal{T} \) of \(G \)
3. Dynamic Programming
 - Store results in table \(\tau_t \)
 - Apply \(A \) to \(F_t \)
 - Visit next node \(t \) of \(\mathcal{T} \) in post-order
4. Output count

Part:
A) Background & Basic Concepts
 - Treewidth, Graph Representation (1) + Dynamic Programming (3) [Samer & Szeider JDA’10]
B) Finding TDs (2)
C) Dynamic Programming (3) on the GPU
Outline (Basic Architecture)

1. Build graph G of F
2. Create TD T of G
3. Dynamic Programming
 - Store results in table τ_t
 - Apply A to F_t
4. Output count

Part:
A) Background & Basic Concepts
 - Treewidth, Graph Representation (1) + Dynamic Programming (3) [Samer & Szeider JDA’10]
B) Finding TDs (2)
C) Dynamic Programming (3) on the GPU
Outline (Basic Architecture)

1. Build graph \(G \) of \(F \)
2. Create TD \(T \) of \(G \)
3. Dynamic Programming
 - Store results in table \(\tau_t \)
 - Apply \(A \) to \(F_t \)
 - done? no
 - Visit next node \(t \) of \(T \) in post-order
 - yes
4. Output count

Part:
A) Background & Basic Concepts
 - Treewidth, Graph Representation (1) + Dynamic Programming (3) [Samer & Szeider JDA’10]
B) Finding TDs (2)
C) Dynamic Programming (3) on the GPU
How to “use” tree decompositions for #SAT/WMC?
Solving #SAT [SamerSzeider10]

\[\varphi = (\neg a \lor b \lor x) \land (a \lor b) \land (c \lor \neg x) \land (b \lor \neg c) \land (\neg b \lor \neg c \lor \neg y) \]

\[\text{Mod}(\varphi) = \{ \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, x\}, \{a, b, c, x\}, \{b, y\}, \{a, b, y\} \} \]

1. Create graph representation
2. Decompose graph
3. Solve problems via S
4. Combine solutions

Diagram: Graph representation of the solution set.
Solving \#SAT \cite{SamerSzeider10}

\[\varphi = (\neg a \lor b \lor x) \land (a \lor b) \land (c \lor \neg x) \land (b \lor \neg c) \land (\neg b \lor \neg c \lor \neg y) \]

1. Create graph representation
2. Decompose graph
3. Solve problems via S
4. Combine solutions
Solving #SAT [SamerSzeider10]

\[\varphi = (\neg a \lor b \lor x) \land (a \lor b) \land (c \lor \neg x) \land (b \lor \neg c) \land (\neg b \lor \neg c \lor \neg y) \]

1. Create graph representation
2. Decompose graph
3. Solve problems via \(S \)
4. Combine solutions
Solving #SAT [SamerSzeider10]

\[\varphi = (\neg a \lor b \lor x) \land (a \lor b) \land (c \lor \neg x) \land (b \lor \neg c) \land (\neg b \lor \neg c \lor \neg y) \]

1. Create graph representation
2. Decompose graph
3. Solve problems via \(S \)
4. Combine solutions

“Local formula” \(F_t \) clauses whose variables are contained in the bag (colored in red above)
Solving #SAT [SamerSzeider10]

\[\varphi = (\neg a \lor b \lor x) \land (a \lor b) \land (c \lor \neg x) \land (b \lor \neg c) \land (\neg b \lor \neg c \lor \neg y) \]

1. Create graph representation
2. Decompose graph
3. Solve problems via \(S \)
4. Combine solutions
Solving #SAT [SamerSzeider10]

\[\varphi = (\neg a \lor b \lor x) \land (a \lor b) \land (c \lor \neg x) \land (b \lor \neg c) \land (\neg b \lor \neg c \lor \neg y) \]

1. Create graph representation
2. Decompose graph
3. Solve problems via \(S \)
4. Combine solutions
Solving #SAT [SamerSzeider10]

\[\varphi = (\neg a \lor b \lor x) \land (a \lor b) \land (c \lor \neg x) \land (b \lor \neg c) \land (\neg b \lor \neg c \lor \neg y) \]

1. Create graph representation
2. Decompose graph
3. Solve problems via \(S \)
4. Combine solutions
Solving \#SAT [SamerSzeider10]

\[\varphi = (\neg a \lor b \lor x) \land (a \lor b) \land (c \lor \neg x) \land (b \lor \neg c) \land (\neg b \lor \neg c \lor \neg y) \]

1. Create graph representation
2. Decompose graph
3. Solve problems via \(S \)
4. Combine solutions
Solving #SAT [SamerSzeider10]

\[\varphi = \neg a \vee b \vee x \land (a \vee b) \land (c \vee \neg x) \land (b \vee \neg c) \land (\neg b \vee \neg c \vee \neg y) \]

1. Create graph representation
2. Decompose graph
3. Solve problems via \(S \)
4. Combine solutions
Solving \#SAT [SamerSzeider10]

\[\varphi = (\neg a \lor b \lor x) \land (a \lor b) \land (c \lor \neg x) \land (b \lor \neg c) \land (\neg b \lor \neg c \lor \neg y) \]

1. Create graph representation
2. Decompose graph
3. Solve problems via \(S \)
4. Combine solutions
φ = (¬a ∨ b ∨ x) ∧ (a ∨ b) ∧ (c ∨ ¬x) ∧ (b ∨ ¬c) ∧ (¬b ∨ ¬c ∨ ¬y)

1. Create graph representation
2. Decompose graph
3. Solve problems via S
4. Combine solutions
Solving $\#\text{SAT}$ [SamerSzeider10]

$\varphi = (\neg a \lor b \lor x) \land (a \lor b) \land (c \lor \neg x) \land (b \lor \neg c) \land (\neg b \lor \neg c \lor \neg y)$

1. Create graph representation
2. Decompose graph
3. Solve problems via S
4. Combine solutions
Solving $\#\text{SAT}$ [SamerSzeider10]

$\varphi = (\neg a \lor b \lor x) \land (a \lor b) \land (c \lor \neg x) \land (b \lor \neg c) \land (\neg b \lor \neg c \lor \neg y)$

1. Create graph representation
2. Decompose graph
3. Solve problems via S
4. Combine solutions

Runtime: $2^{O(tw)} \cdot \text{poly}(|\varphi|)$
“Find” tree decompositions of small width?

Works well even for relatively large instances.

Thanks to the Parameterized Algorithms and Computational Experiments Challenge (PACE) ’16/’17!!!
“Find” tree decompositions of small width?

Works well even for relatively large instances.

Thanks to the Parameterized Algorithms and Computational Experiments Challenge (PACE) ’16/’17!!!
A GPU-based #SAT/WMC-solver

OR how to go parallel?
Dynamic Programming on the GPU

How to parallelize DP?

1. Compute tables for multiple nodes in parallel
 ⇒ Does not allow for immediate massive parallelization due to dependencies to children

2. Distribute computation of rows among different computation units
 ⇒ Allows with right hindsight for massive parallelization

Why: computation of rows are independent
Dynamic Programming on the GPU

How to parallelize DP?

1. Compute tables for multiple nodes in parallel
 ⇒ Does not allow for immediate massive parallelization due to dependencies to children

2. Distribute computation of rows among different computation units
 ⇒ Allows with right hindsight for massive parallelization

Why: computation of rows are independent
Dynamic Programming on the GPU

How to parallelize DP?

1. Compute tables for multiple nodes in parallel

 → Does not allow for immediate massive parallelization due to dependencies to children

2. Distribute computation of rows among different computation units

 → Allows with right hindsight for massive parallelization

Why: computation of rows are independent
Dynamic Programming on the GPU

How to parallelize DP?

1. Compute tables for multiple nodes in parallel
 \[\Rightarrow \text{Does not allow for immediate massive parallelization due to dependencies to children} \]

2. Distribute computation of rows among different computation units
 \[\Rightarrow \text{Allows with right hindsight for massive parallelization} \]

Why: computation of rows are independent
Dynamic Programming on the GPU

How to parallelize DP?

1. Compute tables for multiple nodes in parallel
 - Does not allow for immediate massive parallelization due to dependencies to children

2. Distribute computation of rows among different computation units
 - Allows with right hindsight for massive parallelization

Why: computation of rows are independent
Implementation

Disclaimer for theorists: you need to get your hands dirty

+ Right hindsight
Implementation Ideas

Right hindsight?

1. Data structures: a “pixel” represents #solutions store data as
 a. Array (gpuSAT1); improved in gpuSAT2
 b. Compressed partial assignments in BST (gpuSAT2)

2. Avoid Copying:
 Merge small bags (gpuSAT1 < 14, gpuSAT2 hardware dep.)

3. Handle potential VRAM overflow (gpuSAT2):
 Split bags and previously computed solutions
 (if 2^w assignments do not fit into the VRAM)

4. Get counters right
(1) Data Structures

a. Array: memory address (plus offset) identifies assignment
 ⇒ Issue: produces lots of memory cells that contain value 0

b. BST (gpuSAT2):
 - Compress Assignments (or address assignments not just by a memory cell)
 - Store only where ≠ 0
 - Idea: use BST; simulate this in an array
 (implement manually on GPU; no libs)
(4) Counters:

- WMC: double or double4 (gpuSAT1)
- \#SAT
 - a. run WMC and use uniform factor (gpuSAT1)
 - b. use logarithmic counters (gpuSAT2)
 - Store floating log-counters
 - Numbers stored in relation to exponent 2^e (largest exponent)
 - Dynamically change exponent (keep highest possible precision)

In Practice

- Available on github (GPL3)
- OpenCL: vendor and hardware independent computation framework; C++11
- Works for two graph types: primal, incidence, dual graph
New Architecture (gpuSAT2) [FHZ19]

0. Preprocess F

1. Build G_F

2. Choose TD \mathcal{T}

2b. Preprocess \mathcal{T}

3. DP on GPUs

3a. Solution space splitting

3b. Chunk handler

4. Output count

0. Instance Preprocessing

2. Customized Tree Decompositions

3a. Solution Space Splitting

3b. Execute a small GPU-program in a GPU thread (kernel) for each element in S

Compress the data and store it in the VRAM (separate GPU-programs)

After all chunks are processed memory regions are merged
0. Instance Preprocessing

2. Customized Tree Decompositions
 (#30; minimize max. card. of intersection of bags at node and its children)

3a. Solution Space Splitting

3b. Execute a small GPU-program in a GPU thread (kernel) for each element in S
Compress the data and store it in the VRAM (separate GPU-programs)
After all chunks are processed memory regions are merged
New Architecture (gpuSAT2) [FHZ19]

0. Instance Preprocessing
2. Customized Tree Decompositions
3a. Solution Space Splitting
 (Split larger solutions into smaller portions ⇒ avoid OOM)
3b. Execute a small GPU-program in a GPU thread (kernel) for each element in S
 Compress the data and store it in the VRAM (separate GPU-programs)
 After all chunks are processed memory regions are merged
New Architecture (gpuSAT2) [FHZ19]

0. Instance Preprocessing
1. Customized Tree Decompositions
2. Solution Space Splitting
3a. Execute a small GPU-program in a GPU thread (kernel) for each element in S
3b. Compress the data and store it in the VRAM (separate GPU-programs)
 After all chunks are processed memory regions are merged.
Experimental Work

Instances
- 2585 instances from public benchmarks
- \#SAT and WMC

Limits
- Cannot expect to solve instances of high treewidth.

Experiments
1. Distribution of width
2. Benchmarked all solvers that are publicly available
#SAT: Width Comparison (Preprocessing comp.)

- Runtime well below a second (max. 2.5) 0–40; timeout (900s) on 41
- 54% primal treewidth below 30; 70% below 40
- Preprocessing produces TDs of significantly smaller width
WMC: Width Comparison (w/o Preprocessing)

⇒ Produce decompositions of significantly smaller width
Experimental Work (Runtime)

Setting (Runtime Comparision)

Take gpuSAT1, gpuSAT2, and versions as well as sequential and parallel solvers. Consider Wallclock

Hardware

- non-GPU solving: cluster of 9 nodes; each E5-2650 CPUs(12cores) 2.2 GHz, 256 GB RAM; disabled HT, kernel 4.4
- GPU-solving: i3-3245 3.4 GHz; 16 GB RAM; GPU: Sapphire Pulse ITX Radeon RX 570 GPU; 1.24 GHz with 32 compute units, 2048 shader units, 4GB VRAM
Experimental Work (Runtime Disclaimer)

Questionable Setting?
Aren’t you comparing apples and oranges? YES.

Problems of the Setting
- We compare on different hardware
 - Soon, new cluster node with the same specs and two GPUs
- Wallclock is unfair.
 - Usually user is interested in getting things done quickly (+ fairly cheap)
- Power consumption (Joule) and price of investment better measure
 (BUT not accessible with the current framework)
- We use cheap consumer hardware (200 EUR) for the GPU
 not a Tesla K80 (8k EUR) or DGX2 (400k EUR)
- Parallel vs. sequential: No excuse, sorry
<table>
<thead>
<tr>
<th>pmc preprocessing</th>
<th>solver</th>
<th>0-20</th>
<th>21-30</th>
<th>31-40</th>
<th>41-50</th>
<th>51-60</th>
<th>>60</th>
<th>best</th>
<th>unique</th>
<th>(\sum)</th>
<th>time[h]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>miniC2D</td>
<td>1193</td>
<td>29</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>13</td>
<td>0</td>
<td>1242</td>
<td>68.77</td>
</tr>
<tr>
<td></td>
<td>gpuSAT2</td>
<td>1196</td>
<td>32</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>250</td>
<td>8</td>
<td>1229</td>
<td>71.27</td>
</tr>
<tr>
<td></td>
<td>d4</td>
<td>1163</td>
<td>20</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>28</td>
<td>52</td>
<td>1</td>
<td>1227</td>
<td>76.86</td>
</tr>
<tr>
<td></td>
<td>gpuSAT2(A+B)</td>
<td>1187</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>120</td>
<td>7</td>
<td>1206</td>
<td>74.56</td>
</tr>
<tr>
<td></td>
<td>countAntom 12</td>
<td>1141</td>
<td>18</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>101</td>
<td>0</td>
<td>1191</td>
<td>84.39</td>
</tr>
<tr>
<td></td>
<td>c2d</td>
<td>1124</td>
<td>31</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>1181</td>
<td>84.41</td>
</tr>
<tr>
<td></td>
<td>sharpSAT</td>
<td>1029</td>
<td>16</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>30</td>
<td>253</td>
<td>1</td>
<td>1091</td>
<td>106.88</td>
</tr>
<tr>
<td></td>
<td>gpuSAT1</td>
<td>1020</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>106</td>
<td>7</td>
<td>1036</td>
<td>114.86</td>
</tr>
<tr>
<td></td>
<td>sdd</td>
<td>1014</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1028</td>
<td>124.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>without preprocessing</th>
<th>solver</th>
<th>0-20</th>
<th>21-30</th>
<th>31-40</th>
<th>41-50</th>
<th>51-60</th>
<th>>60</th>
<th>best</th>
<th>unique</th>
<th>(\sum)</th>
<th>time[h]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>countAntom 12</td>
<td>118</td>
<td>511</td>
<td>139</td>
<td>175</td>
<td>21</td>
<td>181</td>
<td>318</td>
<td>15</td>
<td>1145</td>
<td>96.64</td>
</tr>
<tr>
<td></td>
<td>d4</td>
<td>124</td>
<td>514</td>
<td>148</td>
<td>162</td>
<td>21</td>
<td>168</td>
<td>69</td>
<td>15</td>
<td>1137</td>
<td>104.94</td>
</tr>
<tr>
<td></td>
<td>c2d</td>
<td>119</td>
<td>525</td>
<td>165</td>
<td>161</td>
<td>18</td>
<td>120</td>
<td>48</td>
<td>15</td>
<td>1108</td>
<td>110.53</td>
</tr>
<tr>
<td></td>
<td>miniC2D</td>
<td>122</td>
<td>514</td>
<td>128</td>
<td>149</td>
<td>9</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>984</td>
<td>141.22</td>
</tr>
<tr>
<td></td>
<td>sharpSAT</td>
<td>100</td>
<td>467</td>
<td>124</td>
<td>156</td>
<td>12</td>
<td>123</td>
<td>390</td>
<td>4</td>
<td>982</td>
<td>135.41</td>
</tr>
<tr>
<td></td>
<td>gpuSAT2(A+B)</td>
<td>125</td>
<td>539</td>
<td>96</td>
<td>138</td>
<td>0</td>
<td>0</td>
<td>94</td>
<td>19</td>
<td>898</td>
<td>151.16</td>
</tr>
<tr>
<td></td>
<td>gpuSAT2</td>
<td>125</td>
<td>523</td>
<td>96</td>
<td>138</td>
<td>0</td>
<td>0</td>
<td>78</td>
<td>17</td>
<td>882</td>
<td>155.43</td>
</tr>
<tr>
<td></td>
<td>gpuSAT1</td>
<td>125</td>
<td>524</td>
<td>67</td>
<td>140</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>9</td>
<td>856</td>
<td>162.03</td>
</tr>
<tr>
<td></td>
<td>cachet</td>
<td>99</td>
<td>430</td>
<td>71</td>
<td>152</td>
<td>8</td>
<td>57</td>
<td>3</td>
<td>0</td>
<td>817</td>
<td>176.26</td>
</tr>
</tbody>
</table>
Techniques pay off after preprocessing
<table>
<thead>
<tr>
<th>solver</th>
<th>0-20</th>
<th>21-30</th>
<th>31-40</th>
<th>41-50</th>
<th>51-60</th>
<th>>60</th>
<th>best</th>
<th>unique</th>
<th>∑</th>
<th>time[h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>with pmc*</td>
<td></td>
</tr>
<tr>
<td>miniC2D</td>
<td>858</td>
<td>164</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>13</td>
<td>8</td>
<td>1031</td>
<td>21.29</td>
</tr>
<tr>
<td>gpuSAT1</td>
<td>866</td>
<td>158</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>348</td>
<td>4</td>
<td>1024</td>
<td>18.03</td>
</tr>
<tr>
<td>gpuSAT2(A+B)</td>
<td>866</td>
<td>156</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>343</td>
<td>4</td>
<td>1022</td>
<td>17.86</td>
</tr>
<tr>
<td>gpuSAT2</td>
<td>866</td>
<td>138</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>299</td>
<td>4</td>
<td>1004</td>
<td>22.43</td>
</tr>
<tr>
<td>d4</td>
<td>810</td>
<td>106</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46</td>
<td>0</td>
<td>916</td>
<td>55.36</td>
</tr>
<tr>
<td>cachet</td>
<td>617</td>
<td>128</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>106</td>
<td>1</td>
<td>749</td>
<td>93.65</td>
</tr>
<tr>
<td>d4</td>
<td>82</td>
<td>501</td>
<td>142</td>
<td>156</td>
<td>10</td>
<td>19</td>
<td>111</td>
<td>24</td>
<td>910</td>
<td>53.97</td>
</tr>
<tr>
<td>miniC2D</td>
<td>84</td>
<td>517</td>
<td>134</td>
<td>152</td>
<td>3</td>
<td>4</td>
<td>19</td>
<td>7</td>
<td>894</td>
<td>59.69</td>
</tr>
<tr>
<td>gpuSAT2(A+B)</td>
<td>86</td>
<td>527</td>
<td>98</td>
<td>138</td>
<td>0</td>
<td>0</td>
<td>167</td>
<td>19</td>
<td>849</td>
<td>64.40</td>
</tr>
<tr>
<td>gpuSAT2</td>
<td>86</td>
<td>511</td>
<td>98</td>
<td>138</td>
<td>0</td>
<td>0</td>
<td>131</td>
<td>7</td>
<td>833</td>
<td>68.61</td>
</tr>
<tr>
<td>gpuSAT1</td>
<td>86</td>
<td>513</td>
<td>68</td>
<td>140</td>
<td>0</td>
<td>0</td>
<td>182</td>
<td>10</td>
<td>807</td>
<td>73.78</td>
</tr>
<tr>
<td>cachet</td>
<td>60</td>
<td>447</td>
<td>100</td>
<td>145</td>
<td>2</td>
<td>9</td>
<td>118</td>
<td>1</td>
<td>763</td>
<td>89.80</td>
</tr>
</tbody>
</table>
Contributions

- Established Architecture for DP on the GPU
- Competitive Implementation for #SAT/WMC solving

Benchmark: Comparing apples and oranges

BUT: you compare parallel and sequential solvers.

1. We run on cheap consumer hardware (200 EUR).
2. Cannot measure speedup due to OpenCL limitations
 ⇒ migrate to cuda
Take Home Messages

1. Parameterized Algorithms can actually work
 (Preprocessing is key; some techniques pay only off with right preprocessing)
2. Does it work for SAT? ⇒ we don’t expect so.

Future Work

- Improve current setup by:
 - Portfolio solving; Parallel Usage of GPUs; Alternative Frameworks
- Consider whether stable among different GPU hardware
- Parameters (pswidth)

Sponsors: FWF Y698 & P26696; DFG HO 1294/11-1
Summary contd.

Take Home Messages

1. Parameterized Algorithms can actually work
 (Preprocessing is key; some techniques pay only off with right preprocessing)
2. Does it work for SAT? ⇒ we don’t expect so.

Future Work

- Improve current setup by:
 Portfolio solving; Parallel Usage of GPUs; Alternative Frameworks
- Consider whether stable among different GPU hardware
- Parameters (pswidth)

Thanks for listening!

Sponsors: FWF Y698 & P26696; DFG HO 1294/11-1
References

[AMW17]: Abseher, Musliu, Woltran. htd – A Free, Open-Source Framework for (Customized) Tree Decompositions and Beyond. CPAIOR’17. 2017. doi: 10.1007/978-3-319-59776-8_30

[FHZ19]: Fichte, Hecher, Zisser. gpusat2 – An Improved GPU Model Counter. POS 2019.

gpusat is available at: https://github.com/daajoe/gpusat
Backup Slides
Solving (Width: 0–30): #SAT

kc/cdcl: c2d, d4, dsharp
dp: gpusat, dynQBF, dynasp parallel: countAntom, gpusat
cdcl: Cachet, sharpSAT, clasp
bdd: sdd
approx: approxmc, sts
Solving:

<table>
<thead>
<tr>
<th>solver</th>
<th>0-20</th>
<th>21-30</th>
<th>31-40</th>
<th>41-50</th>
<th>51-60</th>
<th>>60</th>
<th>best</th>
<th>∑ rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2d</td>
<td>164</td>
<td>519</td>
<td>175</td>
<td>116</td>
<td>20</td>
<td>118</td>
<td>120</td>
<td>1112</td>
</tr>
<tr>
<td>Cachet</td>
<td>133</td>
<td>421</td>
<td>91</td>
<td>109</td>
<td>8</td>
<td>58</td>
<td>13</td>
<td>820</td>
</tr>
<tr>
<td>d4</td>
<td>169</td>
<td>510</td>
<td>156</td>
<td>119</td>
<td>23</td>
<td>162</td>
<td>191</td>
<td>1139</td>
</tr>
<tr>
<td>gpusat(p)</td>
<td>169</td>
<td>523</td>
<td>79</td>
<td>104</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>875</td>
</tr>
<tr>
<td>miniC2D</td>
<td>167</td>
<td>491</td>
<td>137</td>
<td>103</td>
<td>8</td>
<td>67</td>
<td>2</td>
<td>973</td>
</tr>
<tr>
<td>sharpSAT</td>
<td>136</td>
<td>465</td>
<td>136</td>
<td>112</td>
<td>11</td>
<td>124</td>
<td>483</td>
<td>984</td>
</tr>
<tr>
<td>sts</td>
<td>162</td>
<td>448</td>
<td>101</td>
<td>146</td>
<td>10</td>
<td>45</td>
<td>252</td>
<td>912</td>
</tr>
</tbody>
</table>

Table: Number of counting instances solved by solver and interval.
Empirical Work (first approach)

Observations

- Implementation is fairly naive
- Still: competitive up to width 30
- Requirement: obtain decompositions fast
- Width was surprisingly small (different for SAT)
(1) Data Structures

b. BST (details):

- Continuous sequence 64-bit unsigned integers (cells)
- Cell: empty, index, and value (counter)
- Index cells: lower 32 bits index to the next cell (lower bits assignment 0, upper 1)
- Handle Sync (between parallel threads) by keeping track of the current size (number of allocated cells; prevent to allocate cell again)
Solving #SAT [SamerSzeider10]

$$\varphi = (\neg a \lor b \lor x) \land (a \lor b) \land (c \lor \neg x) \land (b \lor \neg c) \land (\neg b \lor \neg c \lor \neg y)$$

1. Create graph representation
2. Decompose graph
3. Solve problems via S
4. Combine solutions

Nice Tree Decompositions
(note example left is not nice)

LEAF.: Put empty set and counter 1

INTR.: Guess truth value and check satisfiability

REMOVE: Remove a from each assignment (row) in the table and sum up the counters if we get multiple assignments with the same data

JOIN: Match rows with the same assignment and multiply the counters

“Local formula” F_t clauses whose variables are contained in the bag (colored in red above)
Algorithm for Primal Graph

In: Node t, bag χ_t, clauses F_t, sequence C of tables.

Out: Table tab_t

1. **if** type(t) = leaf **then**

2. \[\text{tab}_t \leftarrow \{ \emptyset \} \]

3. **else if** type(t) = intr and $a \in \chi_t \setminus \chi_{t'}$, **then**

4. \[\text{tab}_t \leftarrow \left\{ \tau \cup \{a\} \mid \tau \in \text{tab}'' \land \tau \cup \{a\} \models F_t \right\} \cup \]

5. \[\left\{ \tau \mid \tau \in \text{tab}'' \land \tau \models F_t \right\} \]

6. **else if** type(t) = rem and $a \in \chi_{t'} \setminus \chi_t$ **then**

7. \[\text{tab}_t \leftarrow \left\{ \tau \setminus \{a\} \mid \tau \in \text{tab}'' \right\} \]

8. **else if** type(t) = join **then**

9. \[\text{tab}_t \leftarrow \left\{ \tau \mid \tau \in \text{tab}'' \land \tau \in \text{tab}'' \right\} \]

10. **return** tab_t