
gpusat2 – An Improved GPU Model Counter?

Johannes K. Fichte1, Markus Hecher2,3, and Markus Zisser1

1 TU Dresden, Germany
2 Technische Universität Wien, Austria

3 University of Potsdam, Germany
{markus.hecher,markus.zisser}@tuwien.ac.at

johannes.fichte@tu-dresden.de

Abstract In this paper, we present and evaluate a new parallel proposi-
tional model counter, called gpusat2, which is based on dynamic program-
ming (DP) on tree decompositions using log-counters. gpusat2 implements
the principle of single instructions on multiple threads (SIMT) for parallel
programming on a GPU using the vendor-independent programming
framework OpenCL. We introduce a novel architecture that includes
variable data storages and compressing solution parts. We outline results
to experiments where we compare the runtime of our system with state-
of-the-art model counters on standard benchmark sets for model counting.
In particular, we test also other parallel solvers and the predecessor of
gpusat2. One major outcome is that the novel architecture significantly
improves our solver over its predecessor. As a side result, we observe that
state-of-the-art preprocessors allow to produce tree decompositions of
significantly smaller width.

1 Introduction

The model counting problem (#Sat) asks to compute the number of solutions
of a propositional formula and is complete for the class #·P [30]. #Sat and
its generalization WMC, which also takes weights for the literals into account,
have a variety of applications to real-world questions in modern society, to prob-
abilistic reasoning, statistics, and combinatorics [9,13,14,34,37]. In this paper, we
consider #Sat from the practical perspective. We present and evaluate a new
parallel model counter, called gpusat2, which is based on dynamic programming
(DP) on tree decompositions [32]. gpusat2 significantly improves over its predeces-
sor gpusat1 [18]. Its underlying ideas are as follows. A tree decomposition of a
propositional formula F is defined on a graph representation of F and formalizes
a certain static relationship of the variables of F among each other. The decompo-
sition then gives rise to an evaluation order and to sets of variables, which define
which variables have to be evaluated together when solving the given formula.

? The paper is a preliminary workshop version of a paper that has been accepted
for publication at the CP’2019 conference. The work has been supported by the
Austrian Science Fund (FWF), Grants Y698 and P26696, and the German Science
Fund (DFG), Grant HO 1294/11-1.

Intuitively, the width of a tree decomposition indicates how many variables have
to be considered exhaustively together during the computation. Here, we use the
so-called primal graph [32] as graph representation, even though the incidence
graph [32] theoretically allows for smaller width (off by one). The main reason
for using the primal graph is because previous practical work indicated that the
simpler solving algorithms for the primal graph often outweigh the benefits of
potential smaller width [16,18]. Hence, we focus on the primal graph only. Our
solver implements just as its predecessor the principle of parallel programming
of single instructions on multiple threads (SIMT) on a GPU. Therefore, we
parallelize by executing the computation of variables that have to be considered
exhaustively together on multiple threads, since the computation of an assignment
to these variables is independent of another assignment to these variables during
dynamic programming. We implement the solver using the vendor-independent
programming framework OpenCL [28].

For our solver gpusat2, we introduce an innovative architecture for dynamic
programming that includes using customized tree decompositions [2], storing
solutions to parts of the input instance during the computation variably in
arrays or binary search trees depending on the width of the decomposition, and
compressing sets of assignments. In addition, we avoid data transfer between the
RAM and the Video RAM (VRAM) whenever possible and employ extended pre-
processing by means of the state-of-the-art preprocessors B+E [21] and pmc [22]
for model counting and with a subset of reduction rules for weighted model
counting. In order to increase the accuracy and applicability of our solver to
instances with very high solution count, we store the model count during the
computation by floating log-counters. Therefore, we take our counters during
the dynamic programming in relation to an exponent e to the power of 2 and
dynamically increase the exponent during the computation. Storing values by the
log of the value are a common technique in the domain of probabilistic inference.

Finally, we present experimental work. We compare in detail the runtime of our
system with state-of-the-art model counters on benchmarks for model counting
and weighted model counting. In particular, we also test various other parallel
solvers [4]. One major outcome is that the novel architecture significantly improves
our solver over its predecessor, which especially becomes visible when we also take
preprocessing for both versions into consideration. Then, gpusat2 is able to solve
the third most instances over all considered solvers whereas its predecessor was
limited to little more than 50% of the instances. As a side result, we observe that
state-of-the-art preprocessors allow to produce tree decompositions of significantly
smaller width. Since our techniques also work for WMC, we consider also WMC
in the practical evaluation part and the predecessor of gpusat2 [18]. Our system
is publicly available on github4.

Related Work. In the past, a variety of model counters and weighted model
counters have been implemented based on several different techniques. We list
them in details in Section 5. However, here we want to highlight a few differences

4 gpusat2 is publicly available under GPL3 license at github.com/daajoe/gpusat.

https://github.com/daajoe/GPUSAT/releases/tag/v2.0.0-pre

between our technique and knowledge compilation-based techniques as well
as distributed computing. The solver d4 [23], which implements a knowledge
compilation-based approach, employs heuristics to compute decompositions of
an underlying hypergraph, namely the dual hypergraph, and uses this during the
computation. Note that the following relationships are known for treewidth (i.e.,
the width of a tree decomposition of smallest width) of an arbitrary propositional
formula F inctw(F) ≤ dualtw(F) + 1 and inctw(F) ≤ primtw(F) + 1 where
inctw refers to the treewidth of the incidence graph, dualtw of the dual graph,
and primtw of the primal graph. However, there is no such relationship between
the treewidth of the primal and dual graph. We are currently unaware of how
these theoretical results generalize to hypergraphs. Experimentally, it is easy to
verify that a decomposition of the dual graph is often not useful in our context
as it provides only decompositions of large width. When we consider parallel
solving, a few words on distributed counting are in order. In fact, the model
counter DMC [24] is intended for parallel computation on a cluster of computers
using the message passing model (MPI). However, this distributed computation
requires a separate setup of the cluster and exclusive access to multiple nodes.
We focus on parallel counting with a shared memory model. For details, we refer
to the difference between parallel and distributed computation [29].

2 Preliminaries

Propositional Satisfiability. A literal is a propositional variable x or its nega-
tion ¬x. A clause is a finite set of literals, interpreted as the disjunction of these
literals. A (CNF) formula is a finite set of clauses, interpreted as a conjunction
of the clauses. Let F be a formula. A sub-formula S of F consists of subsets of
clauses of F . For a clause c ∈ F , var(c) consists of all variables that occur in c and
var(F) :=

⋃
c∈F var(c). A (partial) assignment is a mapping σ : var(F)→ {0, 1}.

The formula F (σ) under assignment σ is obtained by removing all clauses c from
F that contain a literal set to 1 by σ and removing from the remaining clauses
all literals set to 0 by σ. An assignment σ is satisfying if F (σ) = ∅. The problem
#Sat asks to output the number of satisfying assignments of a formula.

Tree Decomposition and Treewidth. A tree decomposition (TD) of a given graph
G is a pair T = (T, χ) where T is a rooted tree and χ is a mapping which assigns
to each node t ∈ V (T) a bag χ(t) ⊆ V (G) such that: (i) V (G) =

⋃
t∈V (T) χ(t)

and E(G) ⊆ {{u, v} | t ∈ V (T), {u, v} ⊆ χ(t) }; and (ii) for each r, s, t ∈ T ,
such that s lies on the path from r to t, we have χ(r) ∩ χ(t) ⊆ χ(s). The width
width(T) of T is maxt∈V (T) |χ(t)| − 1. The treewidth tw(G) of G is the minimum
width(T) over all tree decompositions T of G. The primal graph PF [32] of a
formula F has as vertices its variables and two variables are joined by an edge
if they occur together in a clause of F . For brevity, we refer by treewidth of a
formula to the treewidth of its primal graph. For a given node t of a TD (T, χ)
of the primal graph PF , we let Ft := { c | c ∈ F, var(c) ⊆ χ(t) } be the clauses
entirely covered by χ(t). The formula F≤s denotes the union over all Ft for all

descendant nodes t ∈ V (T) of s. In other words, F≤s is the sub-formula of F
that contains all clauses that have been entirely covered by a bag χ(s) for t and
any of its descendant nodes.

Dynamic Programming on TDs. A solver based on dynamic programming (DP)
for propositional formulas such as gpusat1 evaluates the input formula F in parts
along a given tree decomposition of the primal graph PF . For each node t of the
tree decomposition results are usually stored in a local storage ρt. The approach
works in four steps as follows:

1. Construct the primal graph PF of the input formula F .
2. Heuristically compute a tree decomposition T = (T, χ) of the primal graph PF .
3. DP: Traverse the nodes in V (T) in post-order O.

At every node t ∈ O, run an algorithm K that takes as input only the sub-
formula Ft and previously computed results of its children and stores the
results in ρt, which in turn is used by the algorithm at the parent (if exists).

4. Print the (weighted) model count by interpreting the result ρn, which has
been computed for the root n ∈ T .

For details of the algorithm in Step 3, we refer to the literature [18,32]. Even
so, we would like to mention that the algorithm intuitively returns in storage ρt
only (weighted) model counts for the sub-formula F≤t with respect to assignments
to the variables in var(Ft), i.e., ρt contains a compact representation of counts
up to the node t. In order to parallelize the computation of the counts in ρt it is
sufficient to observe that the counters are entirely independent of each other and
each counter in ρt depends only on results previously computed at the children.
Since we have 2| var(Ft)| assignments at each node, for which we can compute
the (potentially zero) counters by the very same operations, we can immediately
parallelize the operations on the GPU [18] by employing a single instruction on
multiple threads (SIMT) computation model. More detailed, the procedure K
in Step 3 refers to a small program that can be executed on the GPU taking a
small set of instructions but multiple input data. Such a procedure is also called
(GPU-)kernel for this hardware architecture. The simplest possible data structure
is an array that just contains the counts, where an assignment is addressed by
the memory address of an entry in the array. However, this data structure has
to be allocated on the video RAM (VRAM) prior to running the kernel on the
GPU. This results in the situation that one might easily run out of memory due
to huge space requirements.

3 An Improved GPU-based DP Architecture

In this section, we present an innovative architecture for parallel dynamic pro-
gramming on the GPU. Later in Section 5, we will see that this also pays off in
our implementation. Novel parts of the architecture are the preprocessors, tree
decomposition selection heuristics (customized TDs), generalization to allow for
adaptable, more advanced data structures, caching intermediate results on the

0. Preprocess F

1. Build graphGF

Cache results
in ιt (VRAM)

Run K(Ft, e,C)
on every e ∈ Si

2a. Choose TD T
nodes done?

no

yes

Visit next node t
of T in post-order

spaces done?

yes

no Get next sub-
set Si of 2var(Ft) Si done?

Transfer ιt into ρt
and compress ρt

Get next child
result chunk C

yes

no

4. Output count

2b. Preprocess T

3. Dynamic Programming (DP)

3a. Search space partitioner

3b. Chunk handler

Figure 1: Architecture of our DP-based solver for parallel execution. Yellow colored
boxes indicate tasks that are required as initial step for the DP-run or to finally read the
model count from the computed results. The parts framed by a dashed box illustrate
the DP-part. Boxes colored in red indicate computations that run on the CPU. Boxes
colored in blue indicate computations that are executed on the GPU.

GPU, and the idea of compressing counters for assignments. Figure 1 outlines the
steps of this innovative architecture. Note that the architecture is independent
from the underlying data structures, i.e., in Step 3 we refer by ρt to a storage
for data, which can be an array or another data structure. Analogously, ιt also
denotes a storage, that caches results in the VRAM for GPU computations. In the
following, we discuss the novel steps of the architecture, whereas implementation
details are presented in Section 4.

Step 0: Instance Preprocessing Before we decompose our instance, we simplify
the formula F by a preprocessor for propositional formulas. There, we preserve
the number of satisfying assignments or the weighted model count, respectively,
and potentially decrease the treewidth of the instance F .

Step 2: Tree Decomposition In Step 2a, we heuristically compute a tree decompo-
sition for the dynamic programming. Various recent literature suggests [19,8,3]
that tree decompositions for practical solving require in addition to “small” width
other criteria to speed up the performance of a solver. Such tree decompositions
are frequently called customized tree decompositions. Therefore, we compute m
different tree decompositions via heuristics [2] and then we select among the m
decompositions one according to a selection criterion. In the implementation,
we use the library htd version 1.2 with default settings [2] where m = 30. The
selection criterion is follows. We first try to minimize the width. Then, if sev-
eral decompositions of the same width are found, we select the decomposition
with the smallest maximal cardinality v(T) of the intersection of bags of any
node with its children, i.e., v(T) = max{ |χt ∩ (χt1 ∪ χt2 ∪ . . . ∪ χt`)| | t ∈
V (T), t1, t2, . . . , t` are children of t in T } where T = (T, χ, n). The idea of the
selection is to balance the trade-off between runtime and space requirements in
the worst-case as outlined in earlier work [19]. In that way, we first improve on
the worst-case runtime (and VRAM consumption) and then on the number of IO
operations required to copy data between RAM and VRAM. After the selection
of tree decomposition T , we preprocess T (Step 2b). There, we combine nodes
to obtain bags of size s, which is the largest number such that on the chosen

hardware 2s GPU threads can still run in parallel. This is in order to reduce the
overhead of copying data onto the VRAM and GPU thread allocation.

Step 3: Dynamic Programming As the architecture of Step 3 is more involved
and consists of multiple parts, we present the step in more details. The main
reason is that we are interested in getting things work also on GPUs, which are
available for the consumer at home or with a small office computer at uni. In
Figure 1 we marked parts colored by red and blue to distinguish between CPU
and GPU computation.

Step 3a: Search Space Partitioning. As described in the preliminaries the DP
proceeds by traversing a tree decomposition in post-order. At each node, we
consider assignments restricted to the variables in var(Ft) and its corresponding
counters. Overall we can have at most 2| var(Ft)| assignments (“local search space”
at a node). Thus, the number of assignments can simply be too large to even
store just one counter per assignment in the VRAM. In practice, we would
expect that plenty of these assignments result in a counter that is zero and hence
we could actually avoid the out-of-memory issue as data can be compressed.
However, on the VRAM we have to allocate memory prior to the computation
and hence it would require to detect the point where we run out-of-memory then
to copy the data back to the RAM resulting in turn in an unutilized GPU. To
avoid this situation, we simply split in Step 3a all possible assignments that are
considered together at once on the GPU into several disjoint subsets S1, S2, . . . , Sk

of 2| var(Ft)|, which we call search space partitioning. On these grounds, we do the
solution space splitting before the GPU kernels are even executed to ensure that
no out-of-memory issue occurs. The splitting is independent of the actually used
data structure and can be used if we store counters in an array similar to gpusat1

or other data structures.

Step 3b: Splitting Input Result from Children and Compression. In the next
step, we systematically process each set Si for 1 ≤ i ≤ k. Therefore, we consider
the assignments in Si and the corresponding counters for the children, i.e., the
counters and corresponding assignments at the children which we need to compute
the counter for an assignment at the currently considered node t. Since we have
both to copy these relevant assignments of the children onto the VRAM and
still allocate enough VRAM for Si, we might run into the situation that both
would not fit into the VRAM. Hence, we need to split for the counts and its
corresponding assignments in Si the relevant results in ρt1 , . . . , ρt` computed
at the child nodes t1, . . . , t` of t into subsets C1 ⊆ ρt1 , . . ., C` ⊆ ρt` . We call
a pair C = 〈C1, . . ., C`〉 of these subsets chunk. Then, the chunk handler
systematically takes each pair C relevant for Si and executes a kernel in a GPU
thread for each element in Si using C. Subsequently, the resulting counts are
summed up accordingly and kept inside cache storage ιt on the VRAM. This
allows to reduce the number of IO operations between RAM and VRAM for tree
decompositions of larger width. Finally, if all chunks are processed for Si, the
memory region ιt is merged into the RAM at node t. There, depending on the

data structure, it can be beneficial to merge and compress resulting solutions
obtained for two different solution spaces Si and Sj . The resulting merged subsets
of ρt might be later reused when spawning kernels for the parent node of t, where
one might prevent splitting results from children.

4 Implementation Details

We implemented our solver gpusat24 based on the architecture presented in the
previous section. In this section, we describe advancements in the implementation
of the solver such as data structures optimized for GPUs, improved accuracy in
form of log-counters, and details on the kernels.

4.1 Binary Search Tree on the GPU

A naive approach to store counters on the VRAM is simply to exhaustively
consider all possible assignments in 2var(Ft) and store for each assignment a
counter, even if zero, in an array. In order to compactly store assignments at a
node t in the VRAM, we propose a new data structure, which is in a broader
sense a binary search tree (BST) for assignments on a very low level architecture.
The binary search tree contains only assignments to Ft whose corresponding
counter is non-zero, in other words, only counters for assignments that can be
extended5 to satisfying assignments of F≤t. The BST data structure allows us to
allocate memory on the VRAM in advance, which is required by OpenCL 1.2,
as kernels itself are not allowed to allocate memory on the VRAM during the
execution. Internally, a BST consists of a continuous sequence of cells that are
implemented as 64-bit unsigned integers. There are three types of cells, namely
empty cells, value cells, and index cells. An empty cell contains a zero whereas
a value cell contains an integer greater than zero. For value cells the 64-bit
integer corresponds to a counter that is internally actually interpreted as a double
floating point type. We discuss details in the next paragraph. Index cells have
either one or two successors in the tree and refer to a value or index cell. For an
index cell, the lower 32 bits of the integer represent the index to the next cell,
where a corresponding variable is set to false. Symmetrically, the upper 32 bits
form an index to the cell if the variable is set to true. Note that either the lower
or upper bits can be zero, indicating that the respective index is empty.

Example 1. Figure 2 (left) illustrates a binary search tree B, where value cells
are depicted in bold face. Both empty cells and empty indices are represented
by the symbol “ε”. In the BST B we assume x < y. In Figure 2 (right), we
can see the BST B′ obtained by inserting the assignment α :={x 7→ 0, y 7→ 1}
into B. The insertion algorithm works as follows. We recursively search for the
assignment α in B by traversing B according to the variable order, beginning at
start index 0. Then, depending on the assignment of the variable at index 0 in α,

5 Extending an assignment can be done by recursively considering previously computed
assignments at the children that correspond to an assignment at the node.

(index) (variable)
cell

low high

0 x ε 1
1 y 3 2
2 - 3
3 - 2
4 ε
.

insert
=⇒

(index) (variable)
cell

low high

0 x 4 1
1 y 3 2
2 - 3
3 - 2
4 y ε 5
5 - 1
6 ε
.

Figure 2: Initial BST B (left) and BST B′ (right), which was obtained after inserting
assignment {x 7→ 0, y 7→ 1}. Value cells are depicted in bold. Both empty cells and
empty indices are indicated by the symbol ε. Note: We store only cells (“low”, “high”).

we continue searching using the next variable at the respective index. As soon as
an empty index is found during the search for the assignment, new index cells
for the remaining variables are subsequently inserted, followed by an inserted
value cell of value 1. As a result, the search for α in B stops at the lower 32 bits
of the index cell at index 0. In turn, these bits refer to a new index cell for y at
index 4, whose upper 32 bits point to a new value cell at index 5. �

Note that we need some fixed order on the variables in var(Ft), to distinguish index
and value cells in order to search, insert, update, and delete counters for a given
assignment over the variables. The binary search tree enables us to address 232−1
many 64-bit integers, which can be changed to relative indices (offsets) if more
address space is required. Further, for a given number b of variables, the tree
requires in the worst-case at most 2b+1 − 1 many 64-bit integers, since there are
at most 2b many value cells (all assignments have non-zero counters) and 2b − 1
index cells (perfectly balanced BST) needed. Note that our data structure has to
be manipulated by several GPU threads in parallel. Our strategy to prevent side
effects by different threads lies in additionally keeping track of the memory area,
where we stored non-empty cells. Therefore, it is sufficient to simply consider
the size of this memory area. In more details, we keep track of the number of
non-empty cells of the tree and prevent writing to a non-empty index again if its
index is below the size or the cell is not an empty cell. However, (i) inserting into
empty indices and (ii) synchronized updates on existing value cells is allowed. In
the actual implementation this is efficiently done by atomic operations for 32-bit
and 64-bit data types provided by the OpenCL framework [26]. In Case (i) we
rely on atomic cmpxchg for atomically inserting into the index if it is empty. In
Case (ii) we use atomic add for concurrently updating counters.

4.2 Accuracy of Large-Scale Counters

In the previous paragraph, we described that value cells are interpreted as 64-bit
floating point numbers. IEEE 64-bit floating point numbers allow to represent
values below 10308 [1]. However, counters can have a significantly higher value.
Therefore, we implement floating point log-counters, where values are stored
in relation to 2e for a 64-bit integer e. In the implementation, we choose the
exponent e dynamically at a node t such that every value for an assignment at

0 - 20
21 - 30

31 - 40
41 - 100

101 +
0

250

500

750

1000

1250
w/o pre
B+E
pmc
pmc, B+E

0 - 20
21 - 30

31 - 40
41 - 100

101 +
0

200

400

600

800 w/o pre
pmc*

Figure 3: Width distribution of #Sat instances (left) before and after preprocessing
(using both B+E and pmc). Width distribution of WMC instances (right) before and
after preprocessing using pmc*. Results are based on the primal treewidth and presented
in intervals. X-axis labels the intervals, y-axis labels the number of instances.

the node can be represented with the exponent while still keeping e small in order
to obtain high accuracy. We normalize the largest counter c in τt at a node t to a
binary floating point number c = 1.x · 2e, where e is chosen accordingly, and 1.x
is stored instead of c. We call the resulting e the largest exponent for t. Note that
all other counters in τt are represented with the same exponent e, i.e., we need
only one exponent per node. The largest exponent is carefully maintained on the
GPU during computation of ρt and passed along to parent nodes. For the largest
exponents at a node, which has more than one child (join node), we may have to
combine counters with respect to different largest exponents for child nodes of t.

4.3 GPU Kernels

When programming for GPUs, small procedures, which are compiled separately
from the CPU code and later executed on the GPU, are called kernels or
shaders [26]. These kernels are spawned on the GPU with massive input data
and executed in parallel. Usually, the programming framework takes care of the
execution scheduling [26]. In our solver gpusat2 we developed two different types
of GPU kernels, namely, compute kernels and support kernels.

Compute kernels run the actual computation of counters at a node t and are
invoked during the traversal of the tree decomposition inside Step 3b when
computing the counters for the considered assignments to Ft. Before a com-
pute kernel K is invoked, it obtains as parameters the formula Ft, its preceding
results ρ1, ρ2, . . . computed at its children, and the sum e of the largest ex-
ponents e1, e2, . . . of its children, which represent the counters. Exponent e is
then also used to represent counters at t, however, it might increase during the
computation and is therefore returned by the kernel after the computation.

Support kernels are used to reorganize data and to carry out memory management
tasks. For example, to run the compression in Step 3b we use a support kernel.
In more detail, this support kernel compactly merges results temporarily stored
in ιt into ρt, which in turn might decrease the number of child chunks needed
at the parent of t. Further, we need a support kernel for computing results at a
node with more than one child. Here, in order to faster combine previous counts

over multiple stores ρt1 , ρt2 , . . . of child nodes t1, t2, . . . we internally use arrays
(that fit into VRAM) in a compute kernel first and then convert the data into a
BST by a support kernel to have a compact representation again at the parent.

5 Experiments

We conducted a series of experiments using several benchmark sets for model
counting. Both benchmark sets6 and our results7are publicly available.

Measure, Setup, and Resource Enforcements. As we use different types
of hardware in our experiments and other natural measures such as power
consumption cannot be recorded with current hardware, we compare wall clock
time and number of timeouts. In the time we include, if applicable, preprocessing
time as well as decomposition time for computing 30 decompositions with a
random seed and decomposition selection time. However, we avoid IO access
on the CPU solvers whenever possible, i.e., we load instances into the RAM
before we start solving. For parallel CPU solvers we allow access to 12 or 24
physical cores on machines where hyperthreading was disabled. We would like
to emphasis that we benchmarked our GPU-based solvers on cheap consumer
hardware, whereas all other solvers ran on recent server hardware. We set a
timeout of 900s and limited available RAM to 14 GB per instance and solver.

Benchmark Instances. We considered a selection of overall 1494 instances
from various publicly available benchmark sets for model counting, consisting
of fre/meel benchmarks8(1480 instances), and c2d benchmarks9 (14 instances).
For WMC, we used the overall 1091 instances from the Cachet benchmark set10.

Benchmarked Solvers. In our experimental work, we present results for the
most recent versions of publicly available #Sat solvers, namely, c2d 2.20 [11],
d4 1.0 [23], DSHARP 1.0 [25], miniC2D 1.0.0 [27], cnf2eadt 1.0 [20], bdd minisat
all 1.0.2 [36], and sdd 2.0 [12] (based on knowledge compilation techniques). We
also considered rather recent approximate solvers ApproxMC2, ApproxMC3 [5]
and sts 1.0 [15], as well as CDCL-based solvers Cachet 1.21 [33], sharpCDCL11,
and sharpSAT 13.02 [35]. Finally, we also included multi-core solver countAn-
tom 1.0 [4] on 12 physical CPU cores, which performed better than on 24 cores.
Note that we benchmarked additional solvers, which we omitted from the pre-
sentation here and where we placed results online in our result data repository.
For WMC, we considered the following solvers: sts, gpusat1, gpusat2, miniC2D,
Cachet, d4, and d-DNNF reasoner 0.4.180625 (on top of d4 as underlying knowl-
edge compiler). All experiments were conducted with default solver options.

6 See: tinyurl.com/gpusat2Instances
7 See: tinyurl.com/gpusat2Results
8 See: tinyurl.com/countingbenchmarks
9 See: reasoning.cs.ucla.edu/c2d

10 See: cs.rochester.edu/u/kautz/Cachet
11 See: tools.computational-logic.org

http://reasoning.cs.ucla.edu/c2d/download.php
http://www.cril.univ-artois.fr/KC/d4.html
https://bitbucket.org/haz/dsharp
http://reasoning.cs.ucla.edu/minic2d/
http://www.cril.univ-artois.fr/KC/eadt.html
http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
http://reasoning.cs.ucla.edu/sdd/
https://bitbucket.org/kuldeepmeel/approxmc
http://cs.stanford.edu/~ermon/code/STS.zip
https://www.cs.rochester.edu/u/kautz/Cachet/cachet-wmc-1-21.zip
http://tools.computational-logic.org/content/sharpCDCL.php
https://sites.google.com/site/marcthurley/sharpsat
http://www.cril.univ-artois.fr/kc/ressources/query-dnnf-0.4.180625.zip
https://tinyurl.com/gpusat2Instances
https://tinyurl.com/gpusat2Results
http://tinyurl.com/countingbenchmarks
http://reasoning.cs.ucla.edu/c2d/results.html
https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks/index.html
http://tools.computational-logic. org/content/sharpCDCL.php

prob pre vMdn cMdn t[s] Mdn to t[s] Mdn pre to Mdn 50% 80% 90% 95% min max mdn mean

#Sat w/o pre 637 810 0.07 6 n/a n/a 31 31 166 378 922 n/a n/a n/a n/a
pmc, B+E 231 350 0.02 6 0.06 192 3 3 17 201 823 -72 755 22 31.9
pmc 231 189 0.03 6 0.03 103 3 4 19 228 823 -1839 547 23 23.1
B+E 231 185 0.02 6 0.04 189 3 3 18 192 823 -2 633 23 31.7

WMC w/o pre 200 519 0.04 0 n/a n/a 28 28 40 43 54 n/a n/a n/a n/a
pmc* 200 300 0.03 0 0.03 0 11 11 20 25 30 0 330 16 18.8

Table 1: Overview on upper bounds of the primal treewidth for the considered bench-
marks before and after preprocessing. vMdn median of variables, cMdn median of
clauses, t[s] Mdn of the decomposition runtime in s, maximum runtime t[s] Max, median
Mdn and percentiles of the upper bounds on the treewidth, and min/max/mdn/mean
of the width improvement after preprocessing. Negative values indicate worse results.

For gpusat2 we considered the array (A) and BST (B) data structure. Further, we
designed a combination referred to by A+B aiming to minimize the drawbacks of
both variants, which uses the array structure for tree decompositions with width
less than 30 and runs with the BST otherwise.

Benchmark Machines. The non-GPU solvers were executed on a cluster of 9
nodes. Each node is equipped with two Intel Xeon E5-2650 CPUs consisting of
12 physical cores each at 2.2 GHz clock speed and 256 GB RAM. The results
were gathered on Ubuntu 16.04.1 LTS machines with disabled hyperthreading
on kernel 4.4.0-139, which is already a post-Spectre and post-Meltdown kernel12.
For gpusat1 and gpusat2 we used a machine equipped with a consumer GPU: Intel
Core i3-3245 CPU operating at 3.4 GHz, 16 GB RAM, and one Sapphire Pulse ITX
Radeon RX 570 GPU running at 1.24 GHz with 32 compute units, 2048 shader
units, and 4GB VRAM using driver amdgpu-pro-18.30-641594 and the vendor-
independent OpenCL 1.2 framework. The system operated on Ubuntu 18.04.1
LTS with kernel 4.15.0-34.

Results

First, we present how existing preprocessors for #Sat and equivalence-preserving
preprocessors for WMC influence the treewidth on the considered benchmarks.

Treewidth Analysis. We computed upper bounds on the primal treewidth for
our benchmarks before and after preprocessing and state them in intervals. For
model-count preserving preprocessing we explored both B+E Apr2016 [21] and
pmc 1.1 [22]. For WMC, we used pmc with documented options −vivification
−eliminateLit −litImplied −iterate = 10 to preserve all the models, which we
refer to by pmc*. In this experiment, we used different timeouts. We set the
timeout of the preprocessors to 900 seconds and allowed further 1800 seconds for
the decomposer to get a detailed picture of treewidth upper bounds. Figure 3
(left) presents the width distribution of number of instances (y-axis) and their

12 Details on spectre and meltdown: spectreattack.com.

http://www.cril.univ-artois.fr/kc/bpe2.html
http://www.cril.univ-artois.fr/kc/pmc.html
https://spectreattack.com/

600 700 800 900 1000 1100
0

100

200

300

400

500

600

700

800

900
countAntom 12
d4
c2d
miniC2D
sharpSAT
sts
gpusat2(vbest)
gpusat2(A+B)
gpusat2(A)
gpusat2(B)
gpusat1
cachet
dsharp

700 800 900 1000 1100 1200
0

100

200

300

400

500

600

700

800

900
miniC2D
gpusat2(B)
d4
countAntom 12
c2d
sharpSAT
gpusat1
sdd
sts
dsharp

Figure 4: Runtime for the top 10 solvers over all the #Sat instances without preprocess-
ing (left), and with pmc preprocessor (right). The x-axis refers to the number of instances;
y-axis depicts the runtime sorted in ascending order for each solver individually.

corresponding upper bounds (x-axis) for primal treewidth, both before and after
preprocessing using B+E, pmc, and both preprocessors in combination (first
pmc, then B+E) for #Sat. Table 1 (top) provides statistics on the benchmarks
combined, including runtime of the preprocessor, runtime of the decomposer to
obtain a decomposition, upper bounds on primal treewidth, and its improvements
before and after preprocessing. Further, the table also lists the median of the
widths of the obtained decompositions and their percentiles, which is the treewidth
upper bound a given percentage of the instances have. Interestingly, overall we
have that a majority of the instances after preprocessing has width below 20.
In more details, more than 80% of the #Sat instances have primal treewidth
below 19 after preprocessing, whereas 90% of the instances have treewidth
below 192 for B+E. With pmc we observed a corner case where the primal
treewidth upper bound increased by 1839, however, on average we observed a
mean improvement on the upper bound of slightly above 23. The best improvement
among the widths of all our instances was achieved with the combination of pmc
and B+E where we improved the width by 755. Overall, both B+E and pmc
managed to drastically reduce the widths, the decomposer ran below 0.1 seconds
in median. Interestingly, even the treewidth upper bounds of the WMC instances
could be reduced with pmc* as depicted in Figure 3 (right). In more detail, after
preprocessing 95% of the instances have primal treewidth below 30, c.f., Table 1.

Solving Performance Analysis. Figure 4 illustrates the top ten solvers with-
out preprocessing (left) and with preprocessor pmc (right) and the variants
of gpusat in a cactus-like plot. Note that regardless of the overall scoring, we
included at least one solver from each of the five categories of solving tech-
niques (knowledge compilation, approximate, CDCL, multi-core, and dynamic
programming). We can observe a slight improvement between gpusat2 and its
predecessor when disallowing preprocessing. From Table 2 we can observe that
the variant gpusat2(A) performs particular well for instances below width 30,
since the compression is relatively expensive. Whereas gpusat2(B) performs well
for instances for width at least 30. Since we can dynamically initialize the data
structure, we designed a variant gpusat2(A+B) where we use array below 30

solver racc 0-20 21-30 31-40 41-50 51-60 >60 best unique
∑

time[h]

countAntom 12 0 118 511 139 175 21 181 318 15 1145 96.64
d4 0 124 514 148 162 21 168 69 15 1137 104.94
c2d 0 119 525 165 161 18 120 48 15 1108 110.53
miniC2D 0 122 514 128 149 9 62 0 0 984 141.22
sharpSAT 0 100 467 124 156 12 123 390 4 982 135.41
sts �1.02 �118 �466 �75 �196 �11 �44 �217 �58 �910 �150.79
gpusat2(vbest) 9.8E-18 125 539 98 141 0 0 97 21 903 149.75
gpusat2(A+B) 9.8E-18 125 539 96 138 0 0 94 19 898 151.16
gpusat2(A) 9.8E-18 125 539 83 139 0 0 96 19 886 153.28
gpusat2(B) 9.8E-18 125 523 96 138 0 0 78 17 882 155.43
gpusat1 1.4E-10 125 524 67 140 0 0 82 9 856 162.03
cachet 0 99 430 71 152 8 57 3 0 817 176.26
dsharp 4.4E-6 100 382 57 135 7 5 73 0 686 205.31

Table 2: Number of #Sat instances (grouped by treewidth upper bound intervals)
solved by the top ten counting solvers without preprocessing. The uniquely solved
instances for the gpusat configurations do not count other gpusat1 and gpusat2 runs;
racc is the model count error in relation to the correct value (lower is better); symbol �
indicates high inaccuracy; time[h] is the total wall clock time in hours, where unsolved
instances are counted as 900s.

and BST for at least 30. This variant performs quite well and is close to the
virtual best version of gpusat2(vbest) between array and BST. Interestingly, when
considering the results on preprocessing in Table 3 (top) and Figure 4 (right)
we observe that the architectural improvements quite pay off. gpusat2(B) can
solve the vast majority of the instances and ranks second place. If one uses B+E
preprocessor shown in Table 3 (bottom), gpusat2 solves even more instances as
well as the other solvers. However, our solver still solves the most instances with
width below 30 and overall manages to get quite close to the others.

Due to space reasons we omit figures on WMC, which we provide in the
supplemental material. When considering the runtime without preprocessing, our
solver gpusat2(A+B) shows significant improvement over its predecessor when the
width of the instance is between 31 and 40. The new version solves about 42
instances more than the previous version gpusat1 and only 16 instances less than
d4, which is the best solver. However, when it comes to preprocessing using pmc*
we obtain a different picture. gpusat solves >100 instances more than d4, but
10 instances less than the best solver miniC2D. What seems a little surprising
at first is that gpusat1 solves 2 instances more than gpusat2(A+B). So one might
ask whether the new version actually provides an improvement over the old
one. However, if we also take Figure 3 into account, we easily observe that the
preprocessing allows us to obtain tree decompositions of significantly smaller
width. In particular, almost all instances are now in the width interval 0–30
and the width interval 31–40 in which the improvements pay off particularly
well. Hence, from the presented experiments we will not see any improvement, in
particular, since selecting many tree decompositions and the data structure is in
practice more expensive than the much simpler technique used in gpusat1.

Currently, we are unable to measure the speed-up of the implementations in
terms of the used cores, mainly due to the fact that drivers for OpenCL do not

solver racc 0-20 21-30 31-40 41-50 51-60 >60 best unique
∑

time[h]

miniC2D 0 1193 29 10 2 1 7 13 0 1242 68.77
gpusat2(B) 4.7E-15 1196 32 1 0 0 0 250 8 1229 71.27
d4 0 1163 20 10 2 4 28 52 1 1227 76.86
countAntom 12 0 1141 18 10 5 4 13 101 0 1191 84.39
c2d 0 1124 31 10 3 3 10 20 0 1181 84.41
sharpSAT 0 1029 16 10 2 4 30 253 1 1091 106.88
gpusat1 1.7E-13 1020 16 0 0 0 0 106 7 1036 114.86
sdd 0 1014 4 7 1 0 2 0 0 1028 124.23
sts �2.7 �927 �4 �8 �7 �5 �52 �73 �21 �1003 �128.43
dsharp 4.4E-6 853 3 7 2 0 0 84 0 865 157.87

c2d 0 1199 24 9 0 2 23 14 0 1257 63.46
miniC2D 0 1203 27 8 0 2 12 8 0 1252 64.92
d4 0 1182 15 9 1 3 31 79 1 1241 69.32
countAntom 12 0 1177 14 8 0 2 34 100 0 1235 69.79
gpusat2(B) 6.4E-16 1204 26 1 0 0 0 150 3 1231 68.15
sdd 0 1106 11 4 1 1 4 0 0 1127 100.48
gpusat1 9.9E-12 1037 16 0 0 0 0 87 3 1053 110.87
sts �1.3 �943 �10 �5 �1 �3 �49 �21 �15 �1011 �125.58
bdd minisat all 0 926 6 3 1 1 0 101 0 937 140.59
sharpSAT 0 842 14 8 0 2 35 197 1 901 153.65

solver racc 0-20 21-30 31-40 41-50 51-60 >60 best unique
∑

time[h]

Table 3: Number of #Sat instances (grouped by treewidth upper bound intervals)
solved by the top ten counting solvers with preprocessor pmc (top) and B+E (bottom).
The number of unique solved instances for the gpusat configurations is without counting
in other gpusat1 and gpusat2 runs; racc is the error of model count in relation to the
correct value (lower is better); time[h] is the total wall clock time in hours, where
unsolved instances are counted as 900 seconds.

support disabling certain cores on the GPU. Therefore, we aim as future work
for a new implementation in CUDA [10].

6 Conclusion and Future Work

We presented an improved OpenCL-based solver gpusat2 for solving model count-
ing. Compared to its predecessor gpusat2 implements adapted memory manage-
ment, specialized data structures on the GPU, improved data type precision
handling, and an initial approach to use customized tree decompositions. We
carried out rigorous experimental work, including establishing upper bounds for
treewidth after preprocessing of commonly used benchmarks and comparing to
most recent solvers. The results of this paper give rise to several research questions.
Since established preprocessors are mainly suited for #Sat, we are interested
in additional preprocessing methods for weighted model counting (WMC) that
reduce the treewidth or at least allow us to compute tree decompositions of
smaller width, in particular for instances of projected model counting. Since
projected model counting is complexity-wise also harder than model counting [17],
it would be interesting whether it can also benefit from a dedicated parallel imple-
mentation. This would be particularly interesting for practical applications, e.g.,
infrastructure reliability [6]. An interesting further research direction is to study
whether efficient data representation techniques can be combined with dynamic
programming in order to lift our solver to QSAT [7] or CSP. Finally, alternative
parameters [31] might be also interesting for a parallel implementation.

References

1. IEEE standard for floating-point arithmetic. IEEE Std 754-2008 pp. 1–70 (Aug
2008), 10.1109/IEEESTD.2008.4610935

2. Abseher, M., Musliu, N., Woltran, S.: htd – a free, open-source framework for
(customized) tree decompositions and beyond. In: Salvagnin, D., Lombardi, M.
(eds.) Proceedings of the 14th International Conference on Integration of Artifi-
cial Intelligence and Operations Research Techniques in Constraint Programming
(CPAIOR’17). Lecture Notes in Computer Science, vol. 10335, pp. 376–386. Springer
Verlag, Padova, Italy (Jun 2017), 10.1007/978-3-319-59776-8 30

3. Abseher, M., Musliu, N., Woltran, S.: Improving the efficiency of dynamic program-
ming on tree decompositions via machine learning. J. Artif. Intell. Res. 58, 829–858
(2017)

4. Burchard, J., Schubert, T., Becker, B.: Laissez-faire caching for parallel #SAT
solving. In: Heule, M., Weaver, S. (eds.) Proceedings of the 18th International
Conference on Theory and Applications of Satisfiability Testing (SAT’15). Lecture
Notes in Computer Science, vol. 9340, pp. 46–61. Springer Verlag, Austin, TX, USA
(2015), 10.1007/978-3-319-24318-4 5

5. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-
aware sampling and weighted model counting for SAT. In: Brodley, C.E., Stone, P.
(eds.) Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI’14).
pp. 1722–1730. The AAAI Press, Québec City, QC, Canada (2014)

6. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Improving approximate counting for
probabilistic inference: From linear to logarithmic sat solver calls. In: Kambhampati,
S. (ed.) Proceedings of 25th International Joint Conference on Artificial Intelligence
(IJCAI’16). pp. 3569–3576. The AAAI Press, New York City, NY, USA (Jul 2016),
https://bitbucket.org/kuldeepmeel/approxmc

7. Charwat, G., Woltran, S.: Dynamic programming-based QBF solving. In: Lonsing,
F., Seidl, M. (eds.) Proceedings of the 4th International Workshop on Quantified
Boolean Formulas (QBF’16). vol. 1719, pp. 27–40. CEUR Workshop Proceedings
(CEUR-WS.org) (2016), co-located with 19th International Conference on Theory
and Applications of Satisfiability Testing (SAT’16)

8. Charwat, G., Woltran, S.: Expansion-based QBF solving on tree decompositions. In:
RCRA@AI*IA. CEUR Workshop Proceedings, vol. 2011, pp. 16–26. CEUR-WS.org
(2017)

9. Choi, A., Van den Broeck, G., Darwiche, A.: Tractable learning for structured
probability spaces: A case study in learning preference distributions. In: Yang, Q.
(ed.) Proceedings of 24th International Joint Conference on Artificial Intelligence
(IJCAI’15). The AAAI Press (2015)

10. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edn. (2013)

11. Darwiche, A.: New advances in compiling CNF to decomposable negation normal
form. In: López De Mántaras, R., Saitta, L. (eds.) Proceedings of the 16th European
Conference on Artificial Intelligence (ECAI’04). pp. 318–322. IOS Press, Valencia,
Spain (2004)

12. Darwiche, A.: SDD: A new canonical representation of propositional knowledge
bases. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI’11). pp. 819–826. AAAI Press/IJCAI, Barcelona,
Catalonia, Spain (Jul 2011)

https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1007/978-3-319-24318-4_5
https://bitbucket.org/kuldeepmeel/approxmc

13. Domshlak, C., Hoffmann, J.: Probabilistic planning via heuristic forward search
and weighted model counting. Journal of Artificial Intelligence Research 30 (2007),
10.1613/jair.2289

14. Dueñas-Osorio, L., Meel, K.S., Paredes, R., Vardi, M.Y.: Counting-based reliability
estimation for power-transmission grids. In: Singh, S.P., Markovitch, S. (eds.) Pro-
ceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI’17).
pp. 4488–4494. The AAAI Press, San Francisco, CA, USA (Feb 2017)

15. Ermon, S., Gomes, C.P., Selman, B.: Uniform solution sampling using a constraint
solver as an oracle. In: de Freitas, N., Murphy, K. (eds.) Proceedings of the 28th
Conference on Uncertainty in Artificial Intelligence (UAI’12). pp. 255–264. AUAI
Press, Catalina Island, CA, USA (Aug 2012)

16. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Answer set solving with bounded
treewidth revisited. In: Balduccini, M., Janhunen, T. (eds.) Proceedings of the 14th
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’17). Lecture Notes in Computer Science, vol. 10377, pp. 132–145. Springer
Verlag, Espoo, Finland (Jul 2017), 10.1007/978-3-319-61660-5 13

17. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Exploiting treewidth for projected
model counting and its limits. In: Beyersdorff, O., Wintersteiger, C.M. (eds.)
Proceedings on the 21th International Conference on Theory and Applications of
Satisfiability Testing (SAT’18). Lecture Notes in Computer Science, vol. 10929, pp.
165–184. Springer Verlag, Oxford, UK (Jul 2018)

18. Fichte, J.K., Hecher, M., Woltran, S., Zisser, M.: Weighted model counting on
the GPU by exploiting small treewidth. In: Azar, Y., Bast, H., Herman, G. (eds.)
Proceedings of the 26th Annual European Symposium on Algorithms (ESA’18).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 112, pp. 28:1–28:16.
Dagstuhl Publishing (2018), 10.4230/LIPIcs.ESA.2018.28

19. Jégou, P., Ndiaye, S., Terrioux, C.: Computing and exploiting tree-decompositions
for solving constraint networks. In: van Beek, P. (ed.) Proceedings of the 11th
International Conference on Principles and Practice of Constraint Programming
(CP’05). Lecture Notes in Computer Science, vol. 3709, pp. 777–781. Springer
Verlag, Sitges, Spain (Oct 2005)

20. Koriche, F., Lagniez, J.M., Marquis, P., Thomas, S.: Knowledge compilation for
model counting: Affine decision trees. In: Rossi, F., Thrun, S. (eds.) Proceedings of
the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13). The
AAAI Press, Beijing, China (Aug 2013)

21. Lagniez, J., Lonca, E., Marquis, P.: Improving model counting by leveraging
definability. In: Kambhampati, S. (ed.) Proceedings of 25th International Joint
Conference on Artificial Intelligence (IJCAI’16). pp. 751–757. The AAAI Press,
New York City, NY, USA (Jul 2016)

22. Lagniez, J., Marquis, P.: Preprocessing for propositional model counting. In: Brodley,
C.E., Stone, P. (eds.) Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI’14). pp. 2688–2694. The AAAI Press, Québec City, QC, Canada
(2014)

23. Lagniez, J.M., Marquis, P.: An improved decision-DDNF compiler. In: Sierra, C.
(ed.) Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI’17). pp. 667–673. The AAAI Press, Melbourne, VIC, Australia (2017)

24. Lagniez, J.M., Marquis, P., Szczepanski, N.: Dmc: A distributed model counter.
In: Proceedings of the Twenty-Seventh International Joint Conference on Artifi-
cial Intelligence, IJCAI’18. pp. 1331–1338. The AAAI Press (7 2018), 10.24963/
ijcai.2018/185

https://doi.org/10.1613/jair.2289
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.4230/LIPIcs.ESA.2018.28
https://doi.org/10.24963/ijcai.2018/185
https://doi.org/10.24963/ijcai.2018/185

25. Muise, Christian J .and McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: Fast d-
DNNF compilation with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) Proceedings
of the 25th Canadian Conference on Artificial Intelligence (AI’17). Lecture Notes in
Computer Science, vol. 7310, pp. 356–361. Springer Verlag, Toronto, ON, Canada
(2012), 10.1007/978-3-642-30353-1 36

26. Munshi, A., Gaster, B., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Program-
ming Guide. Addison-Wesley, 1st edn. (2011)

27. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision diagrams.
In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI’15). pp. 3141–3148. The AAAI Press
(2015)

28. Passerat-Palmbach, J., Hill, D.: OpenCL: A suitable solution to simplify and unify
high performance computing developments, chap. 8. Saxe-Coburg Publications
(2013)

29. Raynal, M.: Parallel computing vs. distributed computing: A great confusion?
(position paper). In: Hunold, S., Costan, A., Giménez, D., Iosup, A., Ricci, L.,
Gómez Requena, M.E., Scarano, V., Varbanescu, A.L., Scott, S.L., Lankes, S.,
Weidendorfer, J., Alexander, M. (eds.) Proceedings of the Parallel Processing
Workshops (Euro-Par’15). Lecture Notes in Computer Science, vol. 9523, pp. 41–53.
Springer Verlag (2015), 10.1007/978-3-319-27308-2 4

30. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82(1–2)
(1996), 10.1016/0004-3702(94)00092-1

31. Sæther, S.H., Telle, J.A., Vatshelle, M.: Solving #SAT and MAXSAT by dynamic
programming. Journal of Artificial Intelligence Research 54, 59–82 (2015)

32. Samer, M., Szeider, S.: Algorithms for propositional model counting. Journal of
Discrete Algorithms 8(1), 50—64 (2010), 10.1016/j.jda.2009.06.002

33. Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: Hoos, H.H., Mitchell,
D.G. (eds.) Online Proceedings of the 7th International Conference on Theory and
Applications of Satisfiability Testing (SAT’04). Vancouver, BC, Canada (2004)

34. Sang, T., Beame, P., Kautz, H.: Performing bayesian inference by weighted model
counting. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings of the 29th National
Conference on Artificial Intelligence (AAAI’05). The AAAI Press (2005)

35. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) Proceedings of the 9th International
Conference Theory and Applications of Satisfiability Testing (SAT’06). pp. 424–429.
Springer Verlag, Seattle, WA, USA (2006), 10.1007/11814948 38

36. Toda, T., Soh, T.: Implementing efficient all solutions SAT solvers. ACM Journal
of Experimental Algorithmics 21, 1.12 (2015), special Issue SEA 2014, Regular
Papers and Special Issue ALENEX 2013

37. Xue, Y., Choi, A., Darwiche, A.: Basing decisions on sentences in decision diagrams.
In: Hoffmann, J., Selman, B. (eds.) Proceedings of the 26th AAAI Conference on
Artificial Intelligence (AAAI’12). The AAAI Press, Toronto, ON, Canada (2012)

https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-319-27308-2_4
https://doi.org/10.1016/0004-3702(94)00092-1
https://doi.org/10.1016/j.jda.2009.06.002
https://doi.org/10.1007/11814948_38

	gpusat2 – An Improved GPU Model Counter

