
SAT: Disruption, Demise & Resurgence

Joao Marques-Silva

PoS Workshop

IST, Lisbon, Portugal

July 8 2019

SAT: Disruption, Demise & Resurgence

Joao Marques-Silva

PoS Workshop

IST, Lisbon, Portugal

July 8 2019

SAT: Disruption, Demise & Resurgence

Joao Marques-Silva

PoS Workshop

IST, Lisbon, Portugal

July 8 2019

How good are CDCL SAT solvers?

Demos

• Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995∼2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

• Example 1: model checking example (from IBM)
• Example 2: cooperative path finding (CPF)

2 / 57

How good are CDCL SAT solvers?

Demos

• Sample SAT of solvers:
1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995∼2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

• Example 1: model checking example (from IBM)
• Example 2: cooperative path finding (CPF)

2 / 57

How good are CDCL SAT solvers?

Demos

• Sample SAT of solvers:
1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995∼2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

• Example 1: model checking example (from IBM)
• Example 2: cooperative path finding (CPF)

2 / 57

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

3 / 57

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

3 / 57

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
No solut ion for makespan 1
Elapsed CPU Time: 0 .830112
Tentat ive makespan 2
Number of va r i ab l e s : 339945
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 . 2 7 1 1 3
c Done running SAT solver . . . CPU Time: 1 . 2 7 1 1 4
No solut ion for makespan 2
Elapsed CPU Time: 1 . 2 7 1 1 4
. . .
. . .
Tentat ive makespan 24
Number of va r i ab l e s : 2832875
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 1 .8653
c Done running SAT solver . . . CPU Time: 1 1 .8653
No solut ion for makespan 24
Elapsed CPU Time: 1 1 .8653
Tentat ive makespan 25
Number of va r i ab l e s : 2946190
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 12 . 3491
c Done running SAT solver . . . CPU Time: 16 .6882
Solut ion found for makespan 25
Elapsed CPU Time: 16 .6995

3 / 57

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents
• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
No solut ion for makespan 1
Elapsed CPU Time: 0 .830112
Tentat ive makespan 2
Number of va r i ab l e s : 339945
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 . 2 7 1 1 3
c Done running SAT solver . . . CPU Time: 1 . 2 7 1 1 4
No solut ion for makespan 2
Elapsed CPU Time: 1 . 2 7 1 1 4
. . .
. . .
Tentat ive makespan 24
Number of va r i ab l e s : 2832875
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 1 .8653
c Done running SAT solver . . . CPU Time: 1 1 .8653
No solut ion for makespan 24
Elapsed CPU Time: 1 1 .8653
Tentat ive makespan 25
Number of va r i ab l e s : 2946190
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 12 . 3491
c Done running SAT solver . . . CPU Time: 16 .6882
Solut ion found for makespan 25
Elapsed CPU Time: 16 .6995

3 / 57

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents
• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
No solut ion for makespan 1
Elapsed CPU Time: 0 .830112
Tentat ive makespan 2
Number of va r i ab l e s : 339945
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 . 2 7 1 1 3
c Done running SAT solver . . . CPU Time: 1 . 2 7 1 1 4
No solut ion for makespan 2
Elapsed CPU Time: 1 . 2 7 1 1 4
. . .
. . .
Tentat ive makespan 24
Number of va r i ab l e s : 2832875
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 1 .8653
c Done running SAT solver . . . CPU Time: 1 1 .8653
No solut ion for makespan 24
Elapsed CPU Time: 1 1 .8653
Tentat ive makespan 25
Number of va r i ab l e s : 2946190
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 12 . 3491
c Done running SAT solver . . . CPU Time: 16 .6882
Solut ion found for makespan 25
Elapsed CPU Time: 16 .6995

3 / 57

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):

• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

4 / 57

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):

• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

4 / 57

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):

• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

4 / 57

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):
• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

4 / 57

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):
• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

4 / 57

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):
• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):
• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

4 / 57

1 SAT Disruption

5 / 57

The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science

• Conflict-Driven Clause Learning (CDCL)
• (CDCL) SAT has impacted many different fields
• Hundreds (thousands?) of practical applications

6 / 57

The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science
• Conflict-Driven Clause Learning (CDCL)
• (CDCL) SAT has impacted many different fields
• Hundreds (thousands?) of practical applications

6 / 57

So, what is a CDCL SAT solver?

• Extend DPLL SAT solver with: [DP60, DLL62]

• Clause learning & non-chronological backtracking [MS95, MSS96, MSS99]

• Exploit UIPs [MS95, MSS99, ZMMM01, SSS12]

• Minimize learned clauses [SB09, Gel09, LLX+17]

• Opportunistically delete clauses [MSS96, MSS99, GN02, AS09]

• Search restarts [GSC97, BMS00, Hua07, Bie08, LOM+18]

• Lazy data structures

• Watched literals [MMZ+01]

• Conflict-guided branching

• Lightweight branching heuristics [MMZ+01]

• Phase saving [PD07]

• ...

7 / 57

So, what is a CDCL SAT solver?

• Extend DPLL SAT solver with: [DP60, DLL62]

• Clause learning & non-chronological backtracking [MS95, MSS96, MSS99]

• Exploit UIPs [MS95, MSS99, ZMMM01, SSS12]

• Minimize learned clauses [SB09, Gel09, LLX+17]

• Opportunistically delete clauses [MSS96, MSS99, GN02, AS09]

• Search restarts [GSC97, BMS00, Hua07, Bie08, LOM+18]

• Lazy data structures
• Watched literals [MMZ+01]

• Conflict-guided branching
• Lightweight branching heuristics [MMZ+01]

• Phase saving [PD07]

• ...

7 / 57

CDCL timeline – somewhat incomplete

1960
DP

1962
DPLL

1995
POSIT

1995
GRASP

2001
Chaff

2003
Minisat

2009
Glucose

• DPLL (DP/DLL): backtracking search with unit propagation

• POSIT: efficient implementation of DPLL
• GRASP:

1. Clause learning; UIPs, implication graphs, decision levels, antecedents, etc. [MS95, MSS96, MSS99]

2. Integration of search restarts with clause learning [BMS00]

• Chaff:
1. VSIDS, watched literals [MMZ+01]

2. Always backtrack after conflict [ZMMM01]

• Minisat:
1. Learned clause minimization [SB09]

• Glucose:
1. LBD [AS09]

• Berkmin, siege, picosat, lingeling, ...

8 / 57

CDCL timeline – somewhat incomplete

1960
DP

1962
DPLL

1995
POSIT

1995
GRASP

2001
Chaff

2003
Minisat

2009
Glucose

• DPLL (DP/DLL): backtracking search with unit propagation
• POSIT: efficient implementation of DPLL

• GRASP:
1. Clause learning; UIPs, implication graphs, decision levels, antecedents, etc. [MS95, MSS96, MSS99]

2. Integration of search restarts with clause learning [BMS00]

• Chaff:
1. VSIDS, watched literals [MMZ+01]

2. Always backtrack after conflict [ZMMM01]

• Minisat:
1. Learned clause minimization [SB09]

• Glucose:
1. LBD [AS09]

• Berkmin, siege, picosat, lingeling, ...

8 / 57

CDCL timeline – somewhat incomplete

1960
DP

1962
DPLL

1995
POSIT

1995
GRASP

2001
Chaff

2003
Minisat

2009
Glucose

• DPLL (DP/DLL): backtracking search with unit propagation
• POSIT: efficient implementation of DPLL
• GRASP:

1. Clause learning; UIPs, implication graphs, decision levels, antecedents, etc. [MS95, MSS96, MSS99]

2. Integration of search restarts with clause learning [BMS00]

• Chaff:
1. VSIDS, watched literals [MMZ+01]

2. Always backtrack after conflict [ZMMM01]

• Minisat:
1. Learned clause minimization [SB09]

• Glucose:
1. LBD [AS09]

• Berkmin, siege, picosat, lingeling, ...

8 / 57

CDCL timeline – somewhat incomplete

1960
DP

1962
DPLL

1995
POSIT

1995
GRASP

2001
Chaff

2003
Minisat

2009
Glucose

• DPLL (DP/DLL): backtracking search with unit propagation
• POSIT: efficient implementation of DPLL
• GRASP:

1. Clause learning; UIPs, implication graphs, decision levels, antecedents, etc. [MS95, MSS96, MSS99]

2. Integration of search restarts with clause learning [BMS00]

• Chaff:
1. VSIDS, watched literals [MMZ+01]

2. Always backtrack after conflict [ZMMM01]

• Minisat:
1. Learned clause minimization [SB09]

• Glucose:
1. LBD [AS09]

• Berkmin, siege, picosat, lingeling, ...

8 / 57

CDCL timeline – somewhat incomplete

1960
DP

1962
DPLL

1995
POSIT

1995
GRASP

2001
Chaff

2003
Minisat

2009
Glucose

• DPLL (DP/DLL): backtracking search with unit propagation
• POSIT: efficient implementation of DPLL
• GRASP:

1. Clause learning; UIPs, implication graphs, decision levels, antecedents, etc. [MS95, MSS96, MSS99]

2. Integration of search restarts with clause learning [BMS00]

• Chaff:
1. VSIDS, watched literals [MMZ+01]

2. Always backtrack after conflict [ZMMM01]

• Minisat:
1. Learned clause minimization [SB09]

• Glucose:
1. LBD [AS09]

• Berkmin, siege, picosat, lingeling, ...

8 / 57

CDCL timeline – somewhat incomplete

1960
DP

1962
DPLL

1995
POSIT

1995
GRASP

2001
Chaff

2003
Minisat

2009
Glucose

• DPLL (DP/DLL): backtracking search with unit propagation
• POSIT: efficient implementation of DPLL
• GRASP:

1. Clause learning; UIPs, implication graphs, decision levels, antecedents, etc. [MS95, MSS96, MSS99]

2. Integration of search restarts with clause learning [BMS00]

• Chaff:
1. VSIDS, watched literals [MMZ+01]

2. Always backtrack after conflict [ZMMM01]

• Minisat:
1. Learned clause minimization [SB09]

• Glucose:
1. LBD [AS09]

• Berkmin, siege, picosat, lingeling, ...

8 / 57

CDCL timeline – somewhat incomplete

1960
DP

1962
DPLL

1995
POSIT

1995
GRASP

2001
Chaff

2003
Minisat

2009
Glucose

• DPLL (DP/DLL): backtracking search with unit propagation
• POSIT: efficient implementation of DPLL
• GRASP:

1. Clause learning; UIPs, implication graphs, decision levels, antecedents, etc. [MS95, MSS96, MSS99]

2. Integration of search restarts with clause learning [BMS00]

• Chaff:
1. VSIDS, watched literals [MMZ+01]

2. Always backtrack after conflict [ZMMM01]

• Minisat:
1. Learned clause minimization [SB09]

• Glucose:
1. LBD [AS09]

• Berkmin, siege, picosat, lingeling, ...

8 / 57

CDCL timeline – somewhat incomplete

1960
DP

1962
DPLL

1995
POSIT

1995
GRASP

2001
Chaff

2003
Minisat

2009
Glucose

• DPLL (DP/DLL): backtracking search with unit propagation
• POSIT: efficient implementation of DPLL
• GRASP:

1. Clause learning; UIPs, implication graphs, decision levels, antecedents, etc. [MS95, MSS96, MSS99]

2. Integration of search restarts with clause learning [BMS00]

• Chaff:
1. VSIDS, watched literals [MMZ+01]

2. Always backtrack after conflict [ZMMM01]

• Minisat:
1. Learned clause minimization [SB09]

• Glucose:
1. LBD [AS09]

• Berkmin, siege, picosat, lingeling, ...

8 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

Larrabee’s
SAT algorithm
didn’t work!

9 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

UIP’s inspired
on USP’s!

9 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

Proposes
modern clause

learning!

9 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

Claims clause
learning will
not work!

9 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

9 / 57

GRASP – a somewhat unknown story

9 / 57

2 SAT Demise?

10 / 57

CDCL SAT solver (continued?) improvement
[Source: Simon 2015]

��

����

�����

�����

�����

�����

��� ��� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
��
�
��
�
���
�
�
�

�
���

�
�
��
�
�
�
�
�
�
�

���

�����������������
���������������

���������������������
��������������

���������������
��������������

��������������������
��������������

�����������������������
��������������������������

11 / 57

Is there a problem with SAT?

• Dwindling number of papers on SAT solving, e.g. at the SAT
conference

• No major performance breakthrough in close to two decades...

• Unclear the net gain over large range of benchmarks

• Are SAT solvers being tuned to specific benchmarks?
• What to do with preprocessing/inprocessing, e.g. when using SAT
solvers as oracles?

• General perception among some researchers ...

• Q: Is there a point in SAT research at present?

12 / 57

Is there a problem with SAT?

• Dwindling number of papers on SAT solving, e.g. at the SAT
conference

• No major performance breakthrough in close to two decades...

• Unclear the net gain over large range of benchmarks

• Are SAT solvers being tuned to specific benchmarks?
• What to do with preprocessing/inprocessing, e.g. when using SAT
solvers as oracles?

• General perception among some researchers ...

• Q: Is there a point in SAT research at present?

12 / 57

Is there a problem with SAT?

• Dwindling number of papers on SAT solving, e.g. at the SAT
conference

• No major performance breakthrough in close to two decades...

• Unclear the net gain over large range of benchmarks
• Are SAT solvers being tuned to specific benchmarks?
• What to do with preprocessing/inprocessing, e.g. when using SAT
solvers as oracles?

• General perception among some researchers ...

• Q: Is there a point in SAT research at present?

12 / 57

Is there a problem with SAT?

• Dwindling number of papers on SAT solving, e.g. at the SAT
conference

• No major performance breakthrough in close to two decades...

• Unclear the net gain over large range of benchmarks
• Are SAT solvers being tuned to specific benchmarks?
• What to do with preprocessing/inprocessing, e.g. when using SAT
solvers as oracles?

• General perception among some researchers ...

• Q: Is there a point in SAT research at present?

12 / 57

Is there a problem with SAT?

• Dwindling number of papers on SAT solving, e.g. at the SAT
conference

• No major performance breakthrough in close to two decades...

• Unclear the net gain over large range of benchmarks
• Are SAT solvers being tuned to specific benchmarks?
• What to do with preprocessing/inprocessing, e.g. when using SAT
solvers as oracles?

• General perception among some researchers ...

• Q: Is there a point in SAT research at present?

12 / 57

3 SAT Resurgence

13 / 57

CDCL SAT is ubiquitous in problem solving

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

14 / 57

CDCL SAT is ubiquitous in problem solving

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

SAT is the oracles’ oracle:
MaxSAT, QBF, LCG, #SAT, SMT,
ASP, FOL, ...

14 / 57

Age of SAT-enabled modular reasoning

15 / 57

Age of SAT-enabled modular reasoning

SAT is a
key enabler
technology

15 / 57

So what are SAT oracles?

No summaries

Yes witnesses

NP oracles

SAT Oracles

models

unsat cores

16 / 57

So what are SAT oracles?

No summaries

Yes witnesses

NP oracles

SAT Oracles

models

unsat cores

16 / 57

The power of the (SAT) oracle

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP
oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle
• Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call

17 / 57

The power of the (SAT) oracle

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP
oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle
• Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call

17 / 57

The power of the (SAT) oracle

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP
oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle

• Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call

17 / 57

The power of the (SAT) oracle

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP
oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle
• Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call

17 / 57

The power of the (SAT) oracle

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP
oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle
• Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP [GF93]

• FSAT is an example of a function problem
• Note: FSAT can be solved with one SAT oracle call

17 / 57

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

18 / 57

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

18 / 57

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution

Function Problems

All solutions Enumeration Problems

solutions Counting Problems

18 / 57

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

18 / 57

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions

Enumeration Problems

solutions Counting Problems

18 / 57

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

18 / 57

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions

Counting Problems

18 / 57

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

solutions Counting Problems

18 / 57

... and beyond NP – decision and function problems

∆p
0 = Σp

0 = P = Πp
0 = ∆p

1

NP = Σp
1 Πp

1 = coNP

PNP = ∆p
2

Σp
2 Πp

2

∆p
3

Σp
3 Πp

3

...

F∆p
0 = FΣp

0 = FP = FΠp
0 = F∆p

1

FNP = FΣp
1 FΠp

1 = coFNP

FPNP = F∆p
2

FΣp
2 FΠp

2

F∆p
3

FΣp
3 FΠp

3

...

19 / 57

Oracle-based problem solving – simple scenario

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

20 / 57

Oracle-based problem solving – general setting

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

21 / 57

Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

22 / 57

Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

Function Problems on Propositional Formulas

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

22 / 57

Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

Function Problems on Propositional Formulas

Optimization Problems

Minimal Sets

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

22 / 57

Selection of topics

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

MaxSAT solvingMUS extraction

MUS enumeration

23 / 57

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

24 / 57

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable?

• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

25 / 57

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

25 / 57

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

25 / 57

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

25 / 57

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

25 / 57

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

25 / 57

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?
25 / 57

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?
Minimality
matters!

25 / 57

Unsatisfiable formulas – MUSes & MCSes

• Given F(⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F(⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

26 / 57

Unsatisfiable formulas – MUSes & MCSes

• Given F(⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F(⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

26 / 57

Unsatisfiable formulas – MUSes & MCSes

• Given F(⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F(⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

26 / 57

Unsatisfiable formulas – MUSes & MCSes

• Given F(⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F(⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

26 / 57

Unsatisfiable formulas – MUSes & MCSes

• Given F(⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F(⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

26 / 57

Unsatisfiable formulas – MUSes & MCSes

• Given F(⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F(⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

26 / 57

Why it matters?

• Analysis of over-constrained systems
• Model-based diagnosis [Rei87]

• Software fault localization
• Spreadsheet debugging
• Debugging relational specifications (e.g. Alloy)
• Type error debugging
• Axiom pinpointing in description logics
• ...

• Model checking of software & hardware systems
• Inconsistency measurement
• Minimal models; MinCost SAT; ...
• ...

• Find minimal relaxations to recover consistency
• But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency
• But also minimum explanations of inconsistency, eg. Smallest MUS

27 / 57

Why it matters?

• Analysis of over-constrained systems
• Model-based diagnosis [Rei87]

• Software fault localization
• Spreadsheet debugging
• Debugging relational specifications (e.g. Alloy)
• Type error debugging
• Axiom pinpointing in description logics
• ...

• Model checking of software & hardware systems
• Inconsistency measurement
• Minimal models; MinCost SAT; ...
• ...

• Find minimal relaxations to recover consistency
• But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency
• But also minimum explanations of inconsistency, eg. Smallest MUS

Enumeration
required!

27 / 57

Deletion-based algorithm

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c ̸∈ MUS

returnM // FinalM is MUS
end
• Number of oracles calls: O(m) [CD91, BDTW93]

28 / 57

Deletion-based algorithm

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // Remove c fromM

returnM // FinalM is MUS
end
• Number of oracles calls: O(m) [CD91, BDTW93]

Monotonicity
implicit &
essential!

28 / 57

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

29 / 57

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

29 / 57

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

29 / 57

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

29 / 57

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

29 / 57

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

29 / 57

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

29 / 57

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

29 / 57

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

29 / 57

Many MUS algorithms

• Formula F with m clauses k the size of largest minimal subset

Algorithm Oracle Calls Reference
Insertion-based O(km) [dSNP88, vMW08]

MCS_MUS O(km) [BK15]

Deletion-based O(m) [CD91, BDTW93]

Linear insertion O(m) [MSL11, BLM12]

Dichotomic O(k log(m)) [HLSB06]

QuickXplain O(k+ k log(mk)) [Jun04]

Progression O(k log(1 + m
k)) [MJB13]

• Note: Lower bound in FPNP|| and upper bound in FPNP [CT95]

• Oracle calls correspond to testing unsatisfiability with SAT solver

• Practical optimizations: clause set trimming; clause set refinement;
redundancy removal; (recursive) model rotation

30 / 57

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

31 / 57

How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.
compute all the MUSes

• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand
• Also used in prime enumeration, propositional abduction, logic
synthesis, SMUS, quantification & XAI

32 / 57

How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.
compute all the MUSes

• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand
• Also used in prime enumeration, propositional abduction, logic
synthesis, SMUS, quantification & XAI

32 / 57

How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.
compute all the MUSes

• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand
• Also used in prime enumeration, propositional abduction, logic
synthesis, SMUS, quantification & XAI

32 / 57

How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.
compute all the MUSes

• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand
• Also used in prime enumeration, propositional abduction, logic
synthesis, SMUS, quantification & XAI

32 / 57

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)

2. Compute minimal hitting set (MHS) H of N , subject to P
• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible

• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

33 / 57

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of N , subject to P

• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible

• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

33 / 57

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of N , subject to P

• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible

• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H

4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

33 / 57

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of N , subject to P

• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible

• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

33 / 57

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of N , subject to P

• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible

• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop
33 / 57

MARCO/eMUS algorithm

Input: CNF formula F
1 begin
2 I← {pi | ci ∈ F}
3 (P,N)← (∅, ∅)
4 while true do
5 (st,H)← MinHittingSet(N ,P)
6 if not st then return
7 F ′ ← {ci |pi ∈ I ∧ pi ̸∈ H}
8 if not SAT(F ′) then
9 M← ComputeMUS(F ′)

10 ReportMUS (M)

11 N ← N ∪ {¬pi | ci ∈M}
12 else
13 P ← P ∪ {pi |pi ∈ H}

14 end

34 / 57

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

35 / 57

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

35 / 57

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

35 / 57

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

35 / 57

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

35 / 57

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

35 / 57

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

35 / 57

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

36 / 57

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest cost MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

37 / 57

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest cost MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

37 / 57

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

37 / 57

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest MCSes
• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

37 / 57

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest cost MCSes
• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

37 / 57

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest cost MCSes
• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

37 / 57

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No

Yes

38 / 57

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

38 / 57

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any
• Compute set of satisfied soft clauses with maximum cost

• Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

38 / 57

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any
• Compute set of satisfied soft clauses with maximum cost

• Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

38 / 57

Many MaxSAT approaches

MaxSAT Al-
gorithms

Branch
& Bound

Iterative

Core GuidedIterative
MHS

Model
Guided

No unit prop; No
cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & iterative MHS
approaches are the most effective [MaxSAT14]

39 / 57

Many MaxSAT approaches

MaxSAT Al-
gorithms

Branch
& Bound

Iterative

Core GuidedIterative
MHS

Model
Guided

No unit prop; No
cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & iterative MHS
approaches are the most effective [MaxSAT14]

39 / 57

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

Iterative SAT Solving

Core-Guided Algorithms

Minimum Hitting Sets

40 / 57

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

41 / 57

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Relax all clauses; Set UB = 12 + 1

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

41 / 57

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Formula is SAT; E.g. all xi = 0 and r1 = r7 = r9 = 1 (i.e. cost = 3)

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

41 / 57

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 2

Refine UB = 3

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

41 / 57

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 2

Formula is SAT; E.g. x1 = x2 = 1; x3 = ... = x8 = 0 and r4 = r9 = 1 (i.e. cost = 2)

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

41 / 57

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

Refine UB = 2

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

41 / 57

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

Formula is UNSAT; terminate

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

41 / 57

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

41 / 57

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

41 / 57

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

Iterative SAT Solving

Core-Guided Algorithms

Minimum Hitting Sets

42 / 57

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

43 / 57

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |φ| − 1; Get unsat core

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

43 / 57

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑6
i=1 ri ≤ 1

Add relaxation variables and AtMostk, k = 1, constraint

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

43 / 57

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑6
i=1 ri ≤ 1

Formula is (again) UNSAT; OPT ≤ |φ| − 2; Get unsat core

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

43 / 57

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

Add new relaxation variables and update AtMostk, k=2, constraint

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

43 / 57

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

Instance is now SAT

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

43 / 57

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

MaxSAT solution is |φ| − I = 12− 2 = 10

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

43 / 57

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

MaxSAT solution is |φ| − I = 12− 2 = 10

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

43 / 57

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

MaxSAT solution is |φ| − I = 12− 2 = 10

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

43 / 57

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

Iterative SAT Solving

Core-Guided Algorithms

Minimum Hitting Sets

44 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K:

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: ∅

• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}. Update K

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K:

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}. Update K

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K:

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}. Update K

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K:

• SAT(F \ {c4, c9})?

• Terminate & return 2

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})?

• Terminate & return 2

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})?

• Terminate & return 2

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})? Yes

• Terminate & return 2

45 / 57

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})? Yes

• Terminate & return 2

45 / 57

MaxSAT solving with SAT oracles – a sample

• A sample of recent algorithms:
Algorithm # Oracle Queries Reference
Linear search SU Exponential*** [BP10]

Binary search Linear* [FM06]

FM/WMSU1/WPM1 Exponential** [FM06, MP08, MMSP09, ABL09, ABGL12]

WPM2 Exponential** [ABL10, ABL13]

Bin-Core-Dis Linear [HMM11, MHM12]

Iterative MHS Exponential [DB11, DB13a, DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted MaxSAT
** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:
• Progression [IMM+14]

• Soft cardinality constraints (OLL) [MDM14, MIM14]

• Recent implementation (RC2, using PySAT) won 2018 MaxSAT Evaluation
• MaxSAT resolution [NB14]

• ...
46 / 57

4 Sample of Applications

47 / 57

Flagship applications

• Bounded (& unbounded) model checking
• Automated planning

• Software model checking
• Equivalence checking
• Package management
• Design debugging

• Haplotyping

48 / 57

PySAT – SAT for all

[IMM18]

PySAT modules

solvers
module

cardenc
module

formula
module

PySAT API

• Open source, available on github
• URL: https://pysathq.github.io/

• Comprehensive list of SAT solvers
• Comprehensive list of cardinality encodings
• Fairly comprehensive documentation
• Several use cases

49 / 57

https://pysathq.github.io/

PySAT – SAT for all

[IMM18]

PySAT modules

solvers
module

cardenc
module

formula
module

PySAT API

• Open source, available on github
• URL: https://pysathq.github.io/

• Comprehensive list of SAT solvers
• Comprehensive list of cardinality encodings
• Fairly comprehensive documentation
• Several use cases

49 / 57

https://pysathq.github.io/

PySAT – SAT for all

[IMM18]

PySAT modules

solvers
module

cardenc
module

formula
module

PySAT API

• Open source, available on github
• URL: https://pysathq.github.io/

• Comprehensive list of SAT solvers
• Comprehensive list of cardinality encodings
• Fairly comprehensive documentation
• Several use cases

49 / 57

https://pysathq.github.io/

Recent applications

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

• On-demand extraction of explanations for any ML model
• More applications in XAI (more later)

• Lots of other applications, by us & by others

50 / 57

Recent applications

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

• On-demand extraction of explanations for any ML model
• More applications in XAI (more later)

• Lots of other applications, by us & by others

50 / 57

Recent applications

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

• On-demand extraction of explanations for any ML model
• More applications in XAI (more later)

• Lots of other applications, by us & by others

50 / 57

Recent applications

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

• On-demand extraction of explanations for any ML model
• More applications in XAI (more later)

• Lots of other applications, by us & by others

50 / 57

Recent applications

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

• On-demand extraction of explanations for any ML model
• More applications in XAI (more later)

• Lots of other applications, by us & by others

50 / 57

SAT (& SMT) meet(s) eXplainable AI

51 / 57

Smallest decision trees – encoding sizes in bytes

[NIPM18]

Model Weather Mouse Cancer Car Income

CP’09* 27K 3.5M 92G 842M 354G

IJCAI’18 190K 1.2M 5.2M 4.1M 1.2G

52 / 57

Smallest decision trees – encoding sizes in bytes

[NIPM18]

Model Weather Mouse Cancer Car Income

CP’09* 27K 3.5M 92G 842M 354G
IJCAI’18 190K 1.2M 5.2M 4.1M 1.2G

52 / 57

Abduction-based explanations

[INMS19]

• Positive:
• General approach, applicable to any ML model
represented as a set of constraints

• E.g. ability to explain predictions of NNs

• Negative:
• NN sizes are fairly small, i.e. tens of neurons
• Best results with ILP-based approach

• SMT/SAT models currently ineffective
• But, algorithms inspired SAT-based solutions

• So, where is SAT used?

• Computing primes, with SAT-inspired algorithms
• In general, oracle-based problem solving

• Modeling NNs & boosted trees with SMT
• Modeling BNNs with SAT

53 / 57

Abduction-based explanations

[INMS19]

• Positive:
• General approach, applicable to any ML model
represented as a set of constraints

• E.g. ability to explain predictions of NNs

• Negative:
• NN sizes are fairly small, i.e. tens of neurons
• Best results with ILP-based approach

• SMT/SAT models currently ineffective
• But, algorithms inspired SAT-based solutions

• So, where is SAT used?

• Computing primes, with SAT-inspired algorithms
• In general, oracle-based problem solving

• Modeling NNs & boosted trees with SMT
• Modeling BNNs with SAT

53 / 57

Abduction-based explanations

[INMS19]

• Positive:
• General approach, applicable to any ML model
represented as a set of constraints

• E.g. ability to explain predictions of NNs

• Negative:
• NN sizes are fairly small, i.e. tens of neurons
• Best results with ILP-based approach

• SMT/SAT models currently ineffective
• But, algorithms inspired SAT-based solutions

• So, where is SAT used?
• Computing primes, with SAT-inspired algorithms

• In general, oracle-based problem solving

• Modeling NNs & boosted trees with SMT
• Modeling BNNs with SAT

53 / 57

Machine learning vs. automated reasoning

Exploit ML Improve AR
(Efficiency)

heuristics; portfolios;
abstractions; tactics; …

54 / 57

Machine learning vs. automated reasoning

Exploit ML Improve AR
(Efficiency)

Exploit AR Improve ML
(Robustness)

heuristics; portfolios;
abstractions; tactics; …

verification; synthesis;
explanations; …

54 / 57

Machine learning vs. automated reasoning

Exploit ML Improve AR
(Efficiency)

Exploit AR Improve ML
(Robustness)

heuristics; portfolios;
abstractions; tactics; …

verification; synthesis;
explanations; …

simplify system design

build trust; debug;
aid decision making

54 / 57

5 SAT Future

55 / 57

Is there a future for SAT?

• Better solvers (always!) needed
• Even if pace of improvement is modest

• SAT-based problem solving is here to stay
• And with high-profile applications, e.g. XAI

• Novel modular reasoning insights are the part of the future
• A prediction:
The future will see widespread uses of SAT-enabled modular reasoners

56 / 57

Is there a future for SAT? Yes!

• Better solvers (always!) needed
• Even if pace of improvement is modest

• SAT-based problem solving is here to stay
• And with high-profile applications, e.g. XAI

• Novel modular reasoning insights are the part of the future
• A prediction:
The future will see widespread uses of SAT-enabled modular reasoners

56 / 57

Is there a future for SAT? Yes!

• Better solvers (always!) needed
• Even if pace of improvement is modest

• SAT-based problem solving is here to stay
• And with high-profile applications, e.g. XAI

• Novel modular reasoning insights are the part of the future
• A prediction:
The future will see widespread uses of SAT-enabled modular reasoners

56 / 57

Is there a future for SAT? Yes!

• Better solvers (always!) needed
• Even if pace of improvement is modest

• SAT-based problem solving is here to stay
• And with high-profile applications, e.g. XAI

• Novel modular reasoning insights are the part of the future
• A prediction:
The future will see widespread uses of SAT-enabled modular reasoners

56 / 57

Is there a future for SAT? Yes!

• Better solvers (always!) needed
• Even if pace of improvement is modest

• SAT-based problem solving is here to stay
• And with high-profile applications, e.g. XAI

• Novel modular reasoning insights are the part of the future
• A prediction:
The future will see widespread uses of SAT-enabled modular reasoners

56 / 57

Questions?

57 / 57

References i

[ABGL12] Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy.
Improving SAT-based weighted MaxSAT solvers.
In CP, pages 86–101, 2012.

[ABL09] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
Solving (weighted) partial MaxSAT through satisfiability testing.
In SAT, pages 427–440, 2009.

[ABL10] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
A new algorithm for weighted partial MaxSAT.
In AAAI, 2010.

[ABL13] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
SAT-based MaxSAT algorithms.
Artif. Intell., 196:77–105, 2013.

[AS09] Gilles Audemard and Laurent Simon.
Predicting learnt clauses quality in modern SAT solvers.
In IJCAI, pages 399–404, 2009.

58 / 57

References ii

[BDTW93] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum.
Diagnosing and solving over-determined constraint satisfaction problems.
In IJCAI, pages 276–281, 1993.

[Bie08] Armin Biere.
PicoSAT essentials.
JSAT, 4(2-4):75–97, 2008.

[BK15] Fahiem Bacchus and George Katsirelos.
Using minimal correction sets to more efficiently compute minimal
unsatisfiable sets.
In CAV (2), volume 9207 of Lecture Notes in Computer Science, pages 70–86.
Springer, 2015.

[BLM12] Anton Belov, Inês Lynce, and Joao Marques-Silva.
Towards efficient MUS extraction.
AI Commun., 25(2):97–116, 2012.

59 / 57

References iii

[BMS00] Luís Baptista and Joao Marques-Silva.
Using randomization and learning to solve hard real-world instances of
satisfiability.
In CP, volume 1894 of Lecture Notes in Computer Science, pages 489–494.
Springer, 2000.

[BP10] Daniel Le Berre and Anne Parrain.
The Sat4j library, release 2.2.
JSAT, 7(2-3):59–6, 2010.

[BS05] James Bailey and Peter J. Stuckey.
Discovery of minimal unsatisfiable subsets of constraints using hitting set
dualization.
In PADL, pages 174–186, 2005.

[CD91] John W. Chinneck and Erik W. Dravnieks.
Locating minimal infeasible constraint sets in linear programs.
INFORMS Journal on Computing, 3(2):157–168, 1991.

[CT95] Zhi-Zhong Chen and Seinosuke Toda.
The complexity of selecting maximal solutions.
Inf. Comput., 119(2):231–239, 1995.

60 / 57

References iv

[DB11] Jessica Davies and Fahiem Bacchus.
Solving MAXSAT by solving a sequence of simpler SAT instances.
In CP, pages 225–239, 2011.

[DB13a] Jessica Davies and Fahiem Bacchus.
Exploiting the power of MIP solvers in MAXSAT.
In SAT, pages 166–181, 2013.

[DB13b] Jessica Davies and Fahiem Bacchus.
Postponing optimization to speed up MAXSAT solving.
In CP, pages 247–262, 2013.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland.
A machine program for theorem-proving.
Commun. ACM, 5(7):394–397, 1962.

[DP60] Martin Davis and Hilary Putnam.
A computing procedure for quantification theory.
J. ACM, 7(3):201–215, 1960.

[dSNP88] J. L. de Siqueira N. and Jean-Francois Puget.
Explanation-based generalisation of failures.
In ECAI, pages 339–344, 1988.

61 / 57

References v

[FM06] Zhaohui Fu and Sharad Malik.
On solving the partial MAX-SAT problem.
In SAT, volume 4121 of Lecture Notes in Computer Science, pages 252–265.
Springer, 2006.

[Gel09] Allen Van Gelder.
Improved conflict-clause minimization leads to improved propositional proof
traces.
In SAT, pages 141–146, 2009.

[GF93] Georg Gottlob and Christian G. Fermüller.
Removing redundancy from a clause.
Artif. Intell., 61(2):263–289, 1993.

[GN02] Evguenii I. Goldberg and Yakov Novikov.
BerkMin: A fast and robust SAT-solver.
In DATE, pages 142–149. IEEE Computer Society, 2002.

[GSC97] Carla P. Gomes, Bart Selman, and Nuno Crato.
Heavy-tailed distributions in combinatorial search.
In CP, volume 1330 of Lecture Notes in Computer Science, pages 121–135.
Springer, 1997.

62 / 57

References vi

[HLSB06] Fred Hemery, Christophe Lecoutre, Lakhdar Sais, and Frédéric Boussemart.
Extracting MUCs from constraint networks.
In ECAI, pages 113–117, 2006.

[HMM11] Federico Heras, António Morgado, and Joao Marques-Silva.
Core-guided binary search algorithms for maximum satisfiability.
In AAAI. AAAI Press, 2011.

[Hua07] Jinbo Huang.
The effect of restarts on the efficiency of clause learning.
In IJCAI, pages 2318–2323, 2007.

[IMM+14] Alexey Ignatiev, António Morgado, Vasco M. Manquinho, Inês Lynce, and Joao
Marques-Silva.
Progression in maximum satisfiability.
In ECAI, volume 263 of Frontiers in Artificial Intelligence and Applications, pages
453–458. IOS Press, 2014.

[IMM18] Alexey Ignatiev, António Morgado, and Joao Marques-Silva.
PySAT: A python toolkit for prototyping with SAT oracles.
In SAT, volume 10929 of Lecture Notes in Computer Science, pages 428–437.
Springer, 2018.

63 / 57

References vii

[INMS19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
Abduction-based explanations for machine learning models.
In AAAI, 2019.

[IPM15] Alexey Ignatiev, Alessandro Previti, and Joao Marques-Silva.
SAT-based formula simplification.
In SAT, volume 9340 of Lecture Notes in Computer Science, pages 287–298.
Springer, 2015.

[IPNM18] Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and João Marques-Silva.
A SAT-based approach to learn explainable decision sets.
In IJCAR, volume 10900 of Lecture Notes in Computer Science, pages 627–645.
Springer, 2018.

[Jun04] Ulrich Junker.
QUICKXPLAIN: preferred explanations and relaxations for over-constrained
problems.
In AAAI, pages 167–172, 2004.

[LLX+17] Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü.
An effective learnt clause minimization approach for CDCL SAT solvers.
In IJCAI, pages 703–711, 2017.

64 / 57

References viii

[LOM+18] Jia Hui Liang, Chanseok Oh, Minu Mathew, Ciza Thomas, Chunxiao Li, and Vijay
Ganesh.
Machine learning-based restart policy for CDCL SAT solvers.
In SAT, pages 94–110, 2018.

[LPMM16] Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva.
Fast, flexible MUS enumeration.
Constraints, 21(2):223–250, 2016.

[LS08] Mark H. Liffiton and Karem A. Sakallah.
Algorithms for computing minimal unsatisfiable subsets of constraints.
J. Autom. Reasoning, 40(1):1–33, 2008.

[MDM14] António Morgado, Carmine Dodaro, and Joao Marques-Silva.
Core-guided MaxSAT with soft cardinality constraints.
In CP, volume 8656 of Lecture Notes in Computer Science, pages 564–573.
Springer, 2014.

[MHM12] António Morgado, Federico Heras, and João Marques-Silva.
Improvements to core-guided binary search for MaxSAT.
In SAT, volume 7317 of Lecture Notes in Computer Science, pages 284–297.
Springer, 2012.

65 / 57

References ix

[MIM14] António Morgado, Alexey Ignatiev, and João Marques-Silva.
MSCG: robust core-guided MaxSAT solving.
JSAT, 9:129–134, 2014.

[MJB13] Joao Marques-Silva, Mikolás Janota, and Anton Belov.
Minimal sets over monotone predicates in boolean formulae.
In CAV, volume 8044 of Lecture Notes in Computer Science, pages 592–607.
Springer, 2013.

[MMSP09] Vasco M. Manquinho, Joao Marques-Silva, and Jordi Planes.
Algorithms for weighted boolean optimization.
In SAT, volume 5584 of Lecture Notes in Computer Science, pages 495–508.
Springer, 2009.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik.
Chaff: Engineering an efficient SAT solver.
In DAC, pages 530–535. ACM, 2001.

[MP08] Joao Marques-Silva and Jordi Planes.
Algorithms for maximum satisfiability using unsatisfiable cores.
In DATE, pages 408–413. ACM, 2008.

66 / 57

References x

[MS95] J. Marques-Silva.
Search Algorithms for Satisfiability Problems in Combinational Switching
Circuits.
PhD thesis, University of Michigan, May 1995.

[MSL11] Joao Marques-Silva and Inês Lynce.
On improving MUS extraction algorithms.
In SAT, volume 6695 of Lecture Notes in Computer Science, pages 159–173.
Springer, 2011.

[MSS96] Joao Marques-Silva and Karem A. Sakallah.
GRASP - a new search algorithm for satisfiability.
In ICCAD, pages 220–227, 1996.

[MSS99] Joao Marques-Silva and Karem A. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Trans. Computers, 48(5):506–521, 1999.

[NB14] Nina Narodytska and Fahiem Bacchus.
Maximum satisfiability using core-guided maxsat resolution.
In AAAI, pages 2717–2723. AAAI Press, 2014.

67 / 57

References xi

[NIPM18] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao Marques-Silva.
Learning optimal decision trees with SAT.
In IJCAI, pages 1362–1368, 2018.

[PD07] Knot Pipatsrisawat and Adnan Darwiche.
A lightweight component caching scheme for satisfiability solvers.
In SAT, volume 4501 of Lecture Notes in Computer Science, pages 294–299.
Springer, 2007.

[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, 1987.

[SB09] Niklas Sörensson and Armin Biere.
Minimizing learned clauses.
In SAT, volume 5584 of Lecture Notes in Computer Science, pages 237–243.
Springer, 2009.

[SSS12] Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann.
Learning back-clauses in SAT.
In SAT, pages 498–499, 2012.

68 / 57

References xii

[SZGN17] Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik.
Maximum satisfiability in software analysis: Applications and techniques.
In CAV, pages 68–94, 2017.

[vMW08] Hans van Maaren and Siert Wieringa.
Finding guaranteed MUSes fast.
In SAT, pages 291–304, 2008.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik.
Efficient conflict driven learning in boolean satisfiability solver.
In ICCAD, pages 279–285. IEEE Computer Society, 2001.

69 / 57

	SAT Disruption
	SAT Demise?
	SAT Resurgence
	Minimal Unsatisfiability
	MUS Enumeration
	Maximum Satisfiability
	Iterative SAT Solving
	Core-Guided Algorithms
	Minimum Hitting Sets

	Sample of Applications
	SAT Future

