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How good are CDCL SAT solvers?

Demos

• Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995∼2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

• Example 1: model checking example (from IBM)
• Example 2: cooperative path finding (CPF)
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How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!
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Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):

• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)
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1 SAT Disruption
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The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science

• Conflict-Driven Clause Learning (CDCL)
• (CDCL) SAT has impacted many different fields
• Hundreds (thousands?) of practical applications
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So, what is a CDCL SAT solver?

• Extend DPLL SAT solver with: [DP60, DLL62]

• Clause learning & non-chronological backtracking [MS95, MSS96, MSS99]

• Exploit UIPs [MS95, MSS99, ZMMM01, SSS12]

• Minimize learned clauses [SB09, Gel09, LLX+17]

• Opportunistically delete clauses [MSS96, MSS99, GN02, AS09]

• Search restarts [GSC97, BMS00, Hua07, Bie08, LOM+18]

• Lazy data structures

• Watched literals [MMZ+01]

• Conflict-guided branching

• Lightweight branching heuristics [MMZ+01]

• Phase saving [PD07]

• ...
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CDCL timeline – somewhat incomplete

1960
DP

1962
DPLL

1995
POSIT

1995
GRASP

2001
Chaff

2003
Minisat

2009
Glucose

• DPLL (DP/DLL): backtracking search with unit propagation

• POSIT: efficient implementation of DPLL
• GRASP:

1. Clause learning; UIPs, implication graphs, decision levels, antecedents, etc. [MS95, MSS96, MSS99]

2. Integration of search restarts with clause learning [BMS00]

• Chaff:
1. VSIDS, watched literals [MMZ+01]

2. Always backtrack after conflict [ZMMM01]

• Minisat:
1. Learned clause minimization [SB09]

• Glucose:
1. LBD [AS09]

• Berkmin, siege, picosat, lingeling, ...
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GRASP – a somewhat unknown story
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GRASP – a somewhat unknown story

Larrabee’s
SAT algorithm
didn’t work!
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GRASP – a somewhat unknown story

UIP’s inspired
on USP’s!
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GRASP – a somewhat unknown story

Proposes
modern clause

learning!
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GRASP – a somewhat unknown story

Claims clause
learning will
not work!
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2 SAT Demise?
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CDCL SAT solver (continued?) improvement
[Source: Simon 2015]
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Is there a problem with SAT?

• Dwindling number of papers on SAT solving, e.g. at the SAT
conference

• No major performance breakthrough in close to two decades...

• Unclear the net gain over large range of benchmarks

• Are SAT solvers being tuned to specific benchmarks?
• What to do with preprocessing/inprocessing, e.g. when using SAT
solvers as oracles?

• General perception among some researchers ...

• Q: Is there a point in SAT research at present?
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3 SAT Resurgence
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CDCL SAT is ubiquitous in problem solving

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC
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Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

SAT is the oracles’ oracle:
MaxSAT, QBF, LCG, #SAT, SMT,
ASP, FOL, ...
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Age of SAT-enabled modular reasoning

15 / 57



Age of SAT-enabled modular reasoning

SAT is a
key enabler
technology
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So what are SAT oracles?

No summaries

Yes witnesses

NP oracles

SAT Oracles

models

unsat cores
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The power of the (SAT) oracle

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP
oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle
• Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call
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unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call
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Beyond decision problems

Answer Problem Type

Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems

# solutions Counting Problems
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... and beyond NP – decision and function problems

∆p
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0 = P = Πp
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Oracle-based problem solving – simple scenario

Decision 
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

20 / 57



Oracle-based problem solving – general setting

Decision 
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries
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Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems
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Selection of topics

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

MaxSAT solvingMUS extraction

MUS enumeration
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Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability
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Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable?

• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?
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... (hundreds of consistent constraints)
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Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
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• How to compute these minimal sets?
Minimality
matters!
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Unsatisfiable formulas – MUSes & MCSes

• Given F(⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F(⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

26 / 57



Unsatisfiable formulas – MUSes & MCSes

• Given F(⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F(⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

26 / 57



Unsatisfiable formulas – MUSes & MCSes

• Given F(⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F(⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

26 / 57



Unsatisfiable formulas – MUSes & MCSes

• Given F(⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F(⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

26 / 57



Unsatisfiable formulas – MUSes & MCSes

• Given F(⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F(⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

26 / 57



Unsatisfiable formulas – MUSes & MCSes

• Given F(⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F(⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

26 / 57



Why it matters?

• Analysis of over-constrained systems
• Model-based diagnosis [Rei87]

• Software fault localization
• Spreadsheet debugging
• Debugging relational specifications (e.g. Alloy)
• Type error debugging
• Axiom pinpointing in description logics
• ...

• Model checking of software & hardware systems
• Inconsistency measurement
• Minimal models; MinCost SAT; ...
• ...

• Find minimal relaxations to recover consistency
• But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency
• But also minimum explanations of inconsistency, eg. Smallest MUS
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Enumeration
required!
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Deletion-based algorithm

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c ̸∈ MUS

returnM // FinalM is MUS
end
• Number of oracles calls: O(m) [CD91, BDTW93]
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Deletion-based algorithm

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // Remove c fromM

returnM // FinalM is MUS
end
• Number of oracles calls: O(m) [CD91, BDTW93]

Monotonicity
implicit &
essential!
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Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}
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Many MUS algorithms

• Formula F with m clauses k the size of largest minimal subset

Algorithm Oracle Calls Reference
Insertion-based O(km) [dSNP88, vMW08]

MCS_MUS O(km) [BK15]

Deletion-based O(m) [CD91, BDTW93]

Linear insertion O(m) [MSL11, BLM12]

Dichotomic O(k log(m)) [HLSB06]

QuickXplain O(k+ k log(mk )) [Jun04]

Progression O(k log(1 + m
k )) [MJB13]

• Note: Lower bound in FPNP|| and upper bound in FPNP [CT95]

• Oracle calls correspond to testing unsatisfiability with SAT solver

• Practical optimizations: clause set trimming; clause set refinement;
redundancy removal; (recursive) model rotation
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Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability
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How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.
compute all the MUSes

• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand
• Also used in prime enumeration, propositional abduction, logic
synthesis, SMUS, quantification & XAI
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How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N ) and MCSes (set P)

2. Compute minimal hitting set (MHS) H of N , subject to P
• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible

• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop
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MARCO/eMUS algorithm

Input: CNF formula F
1 begin
2 I← {pi | ci ∈ F}
3 (P,N )← (∅, ∅)
4 while true do
5 (st,H)← MinHittingSet(N ,P)
6 if not st then return
7 F ′ ← {ci |pi ∈ I ∧ pi ̸∈ H}
8 if not SAT(F ′) then
9 M← ComputeMUS(F ′)

10 ReportMUS (M)

11 N ← N ∪ {¬pi | ci ∈M}
12 else
13 P ← P ∪ {pi |pi ∈ H}

14 end
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An example

MinHS (N ) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s
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Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability
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Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest cost MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]
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MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No

Yes

38 / 57



MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

38 / 57



MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any
• Compute set of satisfied soft clauses with maximum cost

• Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

38 / 57



MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any
• Compute set of satisfied soft clauses with maximum cost

• Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

38 / 57



Many MaxSAT approaches

MaxSAT Al-
gorithms

Branch
& Bound

Iterative

Core GuidedIterative
MHS

Model
Guided

No unit prop; No
cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & iterative MHS
approaches are the most effective [MaxSAT14]
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Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

Iterative SAT Solving

Core-Guided Algorithms

Minimum Hitting Sets
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Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

41 / 57



Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Relax all clauses; Set UB = 12 + 1

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed
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All (possibly many)
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All (possibly many)
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AtMostk/PB constraints over
all relaxation variables

All (possibly many)
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Basic MaxSAT with iterative SAT solving
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All (possibly many)
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Basic MaxSAT with iterative SAT solving
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Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

Iterative SAT Solving

Core-Guided Algorithms
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MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed
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MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |φ| − 1; Get unsat core

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed
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MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑6
i=1 ri ≤ 1

Add relaxation variables and AtMostk, k = 1, constraint

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed
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Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

Iterative SAT Solving

Core-Guided Algorithms

Minimum Hitting Sets

44 / 57



MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K:

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}
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MaxSAT solving with SAT oracles – a sample

• A sample of recent algorithms:
Algorithm # Oracle Queries Reference
Linear search SU Exponential*** [BP10]

Binary search Linear* [FM06]

FM/WMSU1/WPM1 Exponential** [FM06, MP08, MMSP09, ABL09, ABGL12]

WPM2 Exponential** [ABL10, ABL13]

Bin-Core-Dis Linear [HMM11, MHM12]

Iterative MHS Exponential [DB11, DB13a, DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted MaxSAT
** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:
• Progression [IMM+14]

• Soft cardinality constraints (OLL) [MDM14, MIM14]

• Recent implementation (RC2, using PySAT) won 2018 MaxSAT Evaluation
• MaxSAT resolution [NB14]

• ...
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4 Sample of Applications
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Flagship applications

• Bounded (& unbounded) model checking
• Automated planning

• Software model checking
• Equivalence checking
• Package management
• Design debugging

• Haplotyping
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PySAT – SAT for all

[IMM18]

PySAT modules

solvers
module

cardenc
module

formula
module

PySAT API

• Open source, available on github
• URL: https://pysathq.github.io/

• Comprehensive list of SAT solvers
• Comprehensive list of cardinality encodings
• Fairly comprehensive documentation
• Several use cases
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Recent applications

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

• On-demand extraction of explanations for any ML model
• More applications in XAI (more later)

• Lots of other applications, by us & by others
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SAT (& SMT) meet(s) eXplainable AI
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Smallest decision trees – encoding sizes in bytes

[NIPM18]

Model Weather Mouse Cancer Car Income

CP’09* 27K 3.5M 92G 842M 354G

IJCAI’18 190K 1.2M 5.2M 4.1M 1.2G
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Abduction-based explanations

[INMS19]

• Positive:
• General approach, applicable to any ML model
represented as a set of constraints

• E.g. ability to explain predictions of NNs

• Negative:
• NN sizes are fairly small, i.e. tens of neurons
• Best results with ILP-based approach

• SMT/SAT models currently ineffective
• But, algorithms inspired SAT-based solutions

• So, where is SAT used?

• Computing primes, with SAT-inspired algorithms
• In general, oracle-based problem solving

• Modeling NNs & boosted trees with SMT
• Modeling BNNs with SAT
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• Best results with ILP-based approach

• SMT/SAT models currently ineffective
• But, algorithms inspired SAT-based solutions

• So, where is SAT used?
• Computing primes, with SAT-inspired algorithms

• In general, oracle-based problem solving

• Modeling NNs & boosted trees with SMT
• Modeling BNNs with SAT
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Machine learning vs. automated reasoning

Exploit ML Improve AR
(Efficiency)

heuristics; portfolios;
abstractions; tactics; …
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Machine learning vs. automated reasoning

Exploit ML Improve AR
(Efficiency)

Exploit AR Improve ML
(Robustness)

heuristics; portfolios;
abstractions; tactics; …

verification; synthesis;
explanations; …

simplify system design

build trust; debug;
aid decision making 
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5 SAT Future
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Is there a future for SAT?

• Better solvers (always!) needed
• Even if pace of improvement is modest

• SAT-based problem solving is here to stay
• And with high-profile applications, e.g. XAI

• Novel modular reasoning insights are the part of the future
• A prediction:
The future will see widespread uses of SAT-enabled modular reasoners
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