Using Combinatorial Benchmarks to Probe the Reasoning Power of Pseudo-Boolean Solvers

Jakob Nordström
KTH Royal Institute of Technology Stockholm, Sweden
Pragmatics of Constraint Reasoning
Melbourne, Australia
August 28, 2017
Joint work with Jan Elffers, Jesús Giráldez-Cru, and Marc Vinyals

Or: A Tale of
 Four Formulas.

Jakob Nordström
KTH Royal Institute of Technology Stockholm, Sweden
Pragmatics of Constraint Reasoning
Melbourne, Australia
August 28, 2017
Joint work with Jan Elffers, Jesús Giráldez-Cru, and Marc Vinyals

This talk

Focus:

- Applied pseudo-Boolean solving
- Proof complexity of cutting planes
- Connections between the two (or not)

This talk

Focus:

- Applied pseudo-Boolean solving
- Proof complexity of cutting planes
- Connections between the two (or not)

Experimental evaluations of:

- Sat4j [S4j, LP10]
- cdcl-cuttingplanes [Elf16] (cdcl-CP for short)
- Open-WBO [Ope, MML14]

This talk

Focus:

- Applied pseudo-Boolean solving
- Proof complexity of cutting planes
- Connections between the two (or not)

Experimental evaluations of:

- Sat4j [S4j, LP10]
- cdcl-cuttingplanes [Elf16] (cdcl-CP for short)
- Open-WBO [Ope, MML14]

Open-WBO: \quad Re-encoding to $\mathrm{CNF}+\mathrm{CDCL}$ Sat4j \& cdcl-CP: Conflict-driven search natively with PB constraints

Pigeonhole Principle Formula

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i, j} \geq 1 & i \in[n+1] \\
\sum_{i=1}^{n+1} x_{i, j} \leq 1 & j \in[n]
\end{array}
$$

Pigeonhole Principle Formula

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i, j} \geq 1 & i \in[n+1] \\
\sum_{i=1}^{n+1} x_{i, j} \leq 1 & j \in[n]
\end{array}
$$

How to show unsatisfiable?

Pigeonhole Principle Formula

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i, j} \geq 1 & i \in[n+1] \\
\sum_{i=1}^{n+1} x_{i, j} \leq 1 & j \in[n]
\end{array}
$$

How to show unsatisfiable?

- Sum up all pigeons
- Sum up all holes
- Subtract to get $0 \geq 1$

Subset Cardinality Formula [Spe10, VS10, MN14]

Variables $=1 \mathrm{~s}$ in matrix with four 1 s per row/column + extra 1 Each row wants majority true; each column wants majority false

$$
\left(\begin{array}{ccccccccccc}
\mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} \\
\mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & 0 & \mathbf{1}
\end{array}\right) \begin{gathered}
x_{1,1}+x_{1,2}+x_{1,4}+x_{1,8} \geq 2 \\
x_{2,2}+x_{2,3}+x_{2,5}+x_{2,9} \geq 2 \\
x_{3,3}+x_{3,4}+x_{3,6}+x_{3,10} \geq 2 \\
x_{3,10}+x_{7,10}+x_{9,10}+x_{10,10} \leq 2 \\
x_{8,11}+x_{10,11}+x_{11,11} \leq 2
\end{gathered}
$$

Subset Cardinality Formula [Spe10, VS10, MN14]

Variables $=1 \mathrm{~s}$ in matrix with four 1 s per row/column + extra 1 Each row wants majority true; each column wants majority false

$$
\left(\begin{array}{ccccccccccc}
\mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} \\
\mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & 0 & \mathbf{1}
\end{array}\right) \begin{gathered}
x_{1,1}+x_{1,2}+x_{1,4}+x_{1,8} \geq 2 \\
x_{2,2}+x_{2,3}+x_{2,5}+x_{2,9} \geq 2 \\
x_{3,3}+x_{3,4}+x_{3,6}+x_{3,10} \geq 2 \\
x_{3,10}+x_{7,10}+x_{9,10}+x_{10,10} \leq 2 \\
x_{8,11}+x_{10,11}+x_{11,11} \leq 2
\end{gathered}
$$

Subset Cardinality Formula [Spe10, VS10, MN14]

Variables $=1 \mathrm{~s}$ in matrix with four 1 s per row/column + extra 1 Each row wants majority true; each column wants majority false

$$
\left(\begin{array}{ccccccccccc}
\mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} \\
\mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & 0 & \mathbf{1}
\end{array}\right) \begin{gathered}
x_{1,1}+x_{1,2}+x_{1,4}+x_{1,8} \geq 2 \\
x_{2,2}+x_{2,3}+x_{2,5}+x_{2,9} \geq 2 \\
x_{3,3}+x_{3,4}+x_{3,6}+x_{3,10} \geq 2 \\
x_{3,10}+x_{7,10}+x_{9,10}+x_{10,10} \leq 2 \\
x_{2,9}+x_{6,9}+x_{8,9}+x_{9,9} \leq 2 \\
\vdots
\end{gathered}
$$

Subset Cardinality Formula [Spe10, VS10, MN14]

Variables $=1 \mathrm{~s}$ in matrix with four 1 s per row/column + extra 1 Each row wants majority true; each column wants majority false

$$
\left(\begin{array}{ccccccccccc}
\mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} \\
\mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & 0 & \mathbf{1}
\end{array}\right) \begin{gathered}
x_{1,1}+x_{1,2}+x_{1,4}+x_{1,8} \geq 2 \\
x_{2,2}+x_{2,3}+x_{2,5}+x_{2,9} \geq 2 \\
x_{3,3}+x_{3,4}+x_{3,6}+x_{3,10} \geq 2 \\
x_{3,10}+x_{7,10}+x_{9,10}+x_{10,10} \leq 2 \\
x_{8,11}+x_{10,11}+x_{11,11} \leq 2
\end{gathered}
$$

Subset Cardinality Formula [Spe10, VS10, MN14]

Variables $=1 \mathrm{~s}$ in matrix with four 1 s per row/column + extra 1 Each row wants majority true; each column wants majority false

$$
\left(\begin{array}{ccccccccccc}
\mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} \\
\mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & 0 & \mathbf{1}
\end{array}\right) \quad \begin{gathered}
x_{1,1}+x_{1,2}+x_{1,4}+x_{1,8} \geq 2 \\
x_{2,2}+x_{2,3}+x_{2,5}+x_{2,9} \geq 2 \\
x_{3,3}+x_{3,4}+x_{3,6}+x_{3,10} \geq 2 \\
x_{3,10}+x_{7,10}+x_{9,11}+x_{10,11}+x_{11,11} \leq 2
\end{gathered}
$$

How to show unsatisfiable?

Subset Cardinality Formula [Spe10, VS10, MN14]

Variables $=1 \mathrm{~s}$ in matrix with four 1 s per row/column + extra 1 Each row wants majority true; each column wants majority false

$$
\left(\begin{array}{ccccccccccc}
\mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} \\
\mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \mathbf{1} & 0 & 0 & \mathbf{1}
\end{array}\right) \begin{gathered}
x_{1,1}+x_{1,2}+x_{1,4}+x_{1,8} \geq 2 \\
x_{2,2}+x_{2,3}+x_{2,5}+x_{2,9} \geq 2 \\
x_{3,3}+x_{3,4}+x_{3,6}+x_{3,10} \geq 2 \\
x_{3,10}+x_{7,10}+x_{9,10}+x_{10,10} \leq 2 \\
x_{8,11}+x_{10,11}+x_{11,11} \leq 2
\end{gathered}
$$

How to show unsatisfiable?

- Sum up greater-equal constraints for rows
- Sum up less-equal constraints for columns
- Subtract to get $0 \geq 1$

Even Colouring Formula [Mar06]

$G=(V, E)$ connected graph; all $\operatorname{deg}(v)$ even
Constraints $\sum_{e \ni v} x_{e}=\operatorname{deg}(v) / 2$

$$
\begin{array}{rrr}
u+w \geq 1 & u+w \leq 1 \\
u+z \geq 1 & u+z \leq 1 \\
v+x \geq 1 & v+x \leq 1 \\
v+y \geq 1 & v+y \leq 1 \\
x+y+z+w \geq 2 & x+y+z+w \leq 2
\end{array}
$$

Inconsistent iff $|E|$ odd

Even Colouring Formula [Mar06]

$G=(V, E)$ connected graph; all $\operatorname{deg}(v)$ even
Constraints $\sum_{e \ni v} x_{e}=\operatorname{deg}(v) / 2$

$$
\begin{array}{rrr}
u+w \geq 1 & u+w \leq 1 \\
u+z \geq 1 & u+z \leq 1 \\
v+x \geq 1 & v+x \leq 1 \\
v+y \geq 1 & v+y \leq 1 \\
x+y+z+w \geq 2 & x+y+z+w \leq 2
\end{array}
$$

Inconsistent iff $|E|$ odd
How to show unsatisfiable?

Even Colouring Formula [Mar06]

$G=(V, E)$ connected graph; all $\operatorname{deg}(v)$ even
Constraints $\sum_{e \ni v} x_{e}=\operatorname{deg}(v) / 2$

$$
\begin{array}{rlrl}
u+w & \geq 1 & u+w & \leq 1 \\
u+z & \geq 1 & u+z & \leq 1 \\
v+x & \geq 1 & v+x & \leq 1 \\
v+y & \geq 1 & v+y & \leq 1 \\
x+y+z+w & \geq 2 & x+y+z+w & \leq 2
\end{array}
$$

Inconsistent iff $|E|$ odd
How to show unsatisfiable?

- Sum up greater-equal constraints, divide, and round up
- Sum up less-equal constraints, divide, and round down
- Subtract to get $0 \geq 1$

Vertex Cover Formula [VEG ${ }^{+}$17]

$$
\text { Graph } G=(V, E) \text {, size } S \in \mathbb{N}^{+}
$$

$$
\begin{aligned}
\sum_{v \in V} x_{v} & \leq S \\
x_{u}+x_{v} & \geq 1 \quad(u, v) \in E
\end{aligned}
$$

Vertex Cover Formula [VEG ${ }^{+} 17$]

$$
\text { Graph } G=(V, E) \text {, size } S \in \mathbb{N}^{+}
$$

$$
\begin{aligned}
\sum_{v \in V} x_{v} & \leq S \\
x_{u}+x_{v} & \geq 1 \quad(u, v) \in E
\end{aligned}
$$

Take $m \times n$ rectangular, toroidal grid; m even; n odd Inconsistent for $S=m n / 2$ (or even $S=m\lceil n / 2\rceil-1$)

Vertex Cover Formula [VEG ${ }^{+} 17$]

$$
\text { Graph } G=(V, E) \text {, size } S \in \mathbb{N}^{+}
$$

$$
\begin{aligned}
\sum_{v \in V} x_{v} & \leq S \\
x_{u}+x_{v} & \geq 1 \quad(u, v) \in E
\end{aligned}
$$

Take $m \times n$ rectangular, toroidal grid; m even; n odd Inconsistent for $S=m n / 2$ (or even $S=m\lceil n / 2\rceil-1$) How to show unsatisfiable?

Vertex Cover Formula [VEG ${ }^{+} 17$]

Graph $G=(V, E)$, size $S \in \mathbb{N}^{+}$

$$
\begin{aligned}
\sum_{v \in V} x_{v} & \leq S \\
x_{u}+x_{v} & \geq 1 \quad(u, v) \in E
\end{aligned}
$$

Take $m \times n$ rectangular, toroidal grid; m even; n odd Inconsistent for $S=m n / 2$ (or even $S=m\lceil n / 2\rceil-1$)

How to show unsatisfiable?

- Sum over edges in each row, divide, and round up
- Subtract size constraint to get $0 \geq 1$

Theory vs. Practice

All these instances supereasy in theory (tree-like cutting planes)

Theory vs. Practice

All these instances supereasy in theory (tree-like cutting planes) What about practice?

Theory vs. Practice

All these instances supereasy in theory (tree-like cutting planes) What about practice?
Investigate "same instance" scaled to different sizes

Theory vs. Practice

All these instances supereasy in theory (tree-like cutting planes) What about practice?
Investigate "same instance" scaled to different sizes
Study asymptotic behaviour (no cactus plots)

Theory vs. Practice

All these instances supereasy in theory (tree-like cutting planes)
What about practice?
Investigate "same instance" scaled to different sizes
Study asymptotic behaviour (no cactus plots)

- Pigeonhole principle Super-easy for cdcl-CP \& Sat4j; dead-hard for Open-WBO
- Subset cardinality

Super-easy for cdcl-CP \& Sat4j; dead-hard for Open-WBO

- Even colouring

Challenging but doable for cdcl-CP \& Sat4j (though depends on graph) Hard for Open-WBO (though depends a lot on graph)

- Vertex cover

Very challenging for cdcl-CP \& Sat4j; super-easy for Open-WBO

How to Explain This?

- Rational v.s. Boolean solutions?
- Pseudo-Boolean proof search and backdoors?
- Pseudo-Boolean solving vs. CDCL?

Rational v.s. Boolean Solutions?

Observation:

- cdcl-CP \& Sat4j fast when no rational solutions
- More challenging when \exists rational but not Boolean solutions

Rational v.s. Boolean Solutions?

Observation:

- cdcl-CP \& Sat4j fast when no rational solutions
- More challenging when \exists rational but not Boolean solutions

Rational Hypothesis

Pseudo-Boolean solver performance correlates with rational unsatisfiability

Rational v.s. Boolean Solutions?

Observation:

- cdcl-CP \& Sat4j fast when no rational solutions
- More challenging when \exists rational but not Boolean solutions

Rational Hypothesis

Pseudo-Boolean solver performance correlates with rational unsatisfiability

- Beautiful hypothesis (or at least I thought so)
- Only one problem: Not backed up by data

Pseudo-Boolean Proof Search and Backdoors?

More detailed observation about cdcl-CP \& Sat4j:

- Can make run fast when \exists small backdoors to no rational solutions
- By tweaking heuristics, but not changing proof search fundamentals

Pseudo-Boolean Proof Search and Backdoors?

More detailed observation about cdcl-CP \& Sat4j:

- Can make run fast when \exists small backdoors to no rational solutions
- By tweaking heuristics, but not changing proof search fundamentals

Extended Rational Hypothesis

Pseudo-Boolean solvers have potential to run fast when there are small, strong backdoors to rational unsatisfiability

Pseudo-Boolean Proof Search and Backdoors?

More detailed observation about cdcl-CP \& Sat4j:

- Can make run fast when \exists small backdoors to no rational solutions
- By tweaking heuristics, but not changing proof search fundamentals

Extended Rational Hypothesis

Pseudo-Boolean solvers have potential to run fast when there are small, strong backdoors to rational unsatisfiability

- Clearly not if-and-only-if - instances can be easy for other reasons
- If-direction true in theory even for weakest PB proof system
- Seems to hold in practice for (almost) all instances we have studied
- But this is still ongoing work
- What would the practical implications be? (Full division rule needed?)

Pseudo-Boolean Solving vs. CDCL?

- Instance hard for resolution \Rightarrow Open-WBO has no chance

Pseudo-Boolean Solving vs. CDCL?

- Instance hard for resolution \Rightarrow Open-WBO has no chance
- Even "easy versions of hard formulas" can be dead-hard (subset cardinality, even colouring)

Pseudo-Boolean Solving vs. CDCL?

- Instance hard for resolution \Rightarrow Open-WBO has no chance
- Even "easy versions of hard formulas" can be dead-hard (subset cardinality, even colouring)
- Open-WBO can be very good when cardinality encoding works well (vertex cover: $2-\mathrm{CNF}+$ big cardinality constraint)

Pseudo-Boolean Solving vs. CDCL?

- Instance hard for resolution \Rightarrow Open-WBO has no chance
- Even "easy versions of hard formulas" can be dead-hard (subset cardinality, even colouring)
- Open-WBO can be very good when cardinality encoding works well (vertex cover: $2-\mathrm{CNF}+$ big cardinality constraint)
- But very sensitive to input ordering - should we trust nicety of encodings or prefer robust solvers?

Pseudo-Boolean Solving vs. CDCL?

- Instance hard for resolution \Rightarrow Open-WBO has no chance
- Even "easy versions of hard formulas" can be dead-hard (subset cardinality, even colouring)
- Open-WBO can be very good when cardinality encoding works well (vertex cover: 2-CNF + big cardinality constraint)
- But very sensitive to input ordering - should we trust nicety of encodings or prefer robust solvers?
- cdcl-CP with good, fixed order competitive with Open-WBO

Pseudo-Boolean Solving vs. CDCL?

- Instance hard for resolution \Rightarrow Open-WBO has no chance
- Even "easy versions of hard formulas" can be dead-hard (subset cardinality, even colouring)
- Open-WBO can be very good when cardinality encoding works well (vertex cover: 2-CNF + big cardinality constraint)
- But very sensitive to input ordering - should we trust nicety of encodings or prefer robust solvers?
- cdcl-CP with good, fixed order competitive with Open-WBO
- But cdcl-CP deviates if given free choice - what makes Open-WBO stick with good order?

Subset Cardinality for Fixed Bandwidth Matrices

Even Colouring on Rectangular Grids

cdcl-cp \#rows=5
Open-WBO \#rows=5
Sat 4j \#rows $=5$
Sat4jCP \#rows $=5$
reord \#rows $=5$
cdcl-cp \#rows $=6$
Cden-WBO \#rows $=6$
Sat 4 j \#rows $=6$
Sat 4 jCP \#rows $=6$

Vertex Cover on Grids (Rationally UNSAT)

Take-Home Messages

- Study easy, but tricky, crafted instances (not super-hard ones)
- Evaluate asymptotic behaviour (not cactus plots)
- Try to understand what is going on
- Transfer theoretical insights to practical improvements (still ongoing)

Take-Home Messages

- Study easy, but tricky, crafted instances (not super-hard ones)
- Evaluate asymptotic behaviour (not cactus plots)
- Try to understand what is going on
- Transfer theoretical insights to practical improvements (still ongoing)

We're hiring!

- Postdoc position(s) - deadline September 15
- Talk to me or e-mail jakobn@kth. se if interested

Take-Home Messages

- Study easy, but tricky, crafted instances (not super-hard ones)
- Evaluate asymptotic behaviour (not cactus plots)
- Try to understand what is going on
- Transfer theoretical insights to practical improvements (still ongoing)

We're hiring!

- Postdoc position(s) - deadline September 15
- Talk to me or e-mail jakobn@kth. se if interested

Thank you for your attention!

References I

[Elf16] Jan Elffers. cdcl-cuttingplanes: A conflict-driven pseudo-Boolean solver, 2016. Submitted to the Pseudo-Boolean Competition 2016; documentation in preparation.
[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation, 7:59-64, 2010.
[Mar06] Klas Markström. Locality and hard SAT-instances. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):221-227, 2006.
[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT solver. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT '14), volume 8561 of Lecture Notes in Computer Science, pages 438-445. Springer, July 2014.
[MN14] Mladen Mikša and Jakob Nordström. Long proofs of (seemingly) simple formulas. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT '14), volume 8561 of Lecture Notes in Computer Science, pages 121-137. Springer, July 2014.
[Ope] Open-WBO: An open source version of the MaxSAT solver WBO. http://sat.inesc-id.pt/open-wbo/.

References II

[S4j] Sat4j: The Boolean satisfaction and optimization library in Java. http://www.sat4j.org/.
[Spe10] Ivor Spence. sgen1: A generator of small but difficult satisfiability benchmarks. Journal of Experimental Algorithmics, 15:1.2:1-1.2:15, March 2010.
[VEG ${ }^{+} 17$] Marc Vinyals, Jan Elffers, Jesús Giráldez-Crú, Stephan Gocht, and Jakob Nordström. In between resolution and cutting planes: A study of proof systems for pseudo-Boolean SAT solving. Work in progress to be presented at the workshop Pragmatics of Constraint Reasoning, 2017.
[VS10] Allen Van Gelder and Ivor Spence. Zero-one designs produce small hard SAT instances. In Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing (SAT '10), volume 6175 of Lecture Notes in Computer Science, pages 388-397. Springer, July 2010.

