In Between Resolution and Cutting Planes Proof Systems for Pseudo-Boolean SAT Solving

Marc Vinyals

KTH Royal Institute of Technology Stockholm, Sweden

Joint work with Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob Nordström

Pragmatics of Constraint Reasoning Workshop August 28 2017, Melbourne, Australia

What do we do

Study pseudo-Boolean solvers from proof complexity point of view

Question

How powerful are pseudo-Boolean solvers?

Build two kinds of formulas

- solvers can perform well with good heuristics
- solvers do not exploit power of pseudo-Boolean constraints

while not solved :
 unit propagate
 if conflict :
 learn
 backtrack
else :
 decide variable

$x \lor y$	$x \vee \overline{y} \vee z$	$x \vee \overline{y} \vee \overline{z}$	$\overline{x} \lor y$	$\overline{x} \vee \overline{y}$
_				
Datab	ase			
Assign	nment			
Assigi	intent			

while not solved :
 unit propagate
 if conflict :
 learn
 backtrack
else :
 decide variable

$x \lor y$	$x \vee \overline{y} \vee z$	$x \vee \overline{y} \vee \overline{z}$	$\overline{x} \lor y$	$\overline{x} \lor \overline{y}$
Datab	200			
Datab	ase			
Assign	nment			

while not solved :
 unit propagate
 if conflict :
 learn
 backtrack
 else :
 decide variable

y

while not solved :
 unit propagate
 if conflict :
 learn
 backtrack
 else :
 decide variable

 $x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z} \quad \overline{x} \lor y \quad \overline{x} \lor \overline{y}$ Database Assignment $x \stackrel{d}{=} 0 \quad y \stackrel{x \lor y}{=} 1$

while not solved :
 unit propagate
 if conflict :
 learn
 backtrack
 else :
 decide variable

 $x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z} \quad \overline{x} \lor y \quad \overline{x} \lor \overline{y}$ Database Assignment $x \stackrel{d}{=} 0 \quad y \stackrel{x \lor y}{=} 1 \quad z \stackrel{x \lor \overline{y} \lor z}{=} 1$

while not solved :
 unit propagate
 if conflict :
 learn
 backtrack
 else :
 decide variable

 $x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z} \quad \overline{x} \lor y \quad \overline{x} \lor \overline{y}$ Database Assignment $x \stackrel{d}{=} 0 \quad y \stackrel{x \lor y}{=} 1 \quad z \stackrel{x \lor \overline{y} \lor z}{=} 1$

while not solved :
 unit propagate
 if conflict :
 learn
 backtrack
 else :
 decide variable

 $x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z} \quad \overline{x} \lor y \quad \overline{x} \lor \overline{y}$ Database xAssignment $x \stackrel{d}{=} 0 \quad y \stackrel{x \lor y}{=} 1 \quad z \stackrel{x \lor \overline{y} \lor z}{=} 1$

while not solved :
 unit propagate
 if conflict :
 learn
 backtrack
else :
 decide variable

$x \lor y$	$x \vee \overline{y} \vee z$	$x \vee \overline{y} \vee \overline{z}$	$\overline{x} \lor y$	$\overline{x} \vee \overline{y}$
Datab	260			
x	ase			
Assign	nment			

```
while not solved :
    unit propagate
    if conflict :
        learn
        backtrack
    else :
        decide variable
```

$x \lor y$	$x \vee \overline{y} \vee z$	$x \vee \overline{y} \vee \overline{z}$	$\overline{x} \lor y$	$\overline{x} \vee \overline{y}$
Datab	ase			
x				
Assigr	nment			
$x \stackrel{x}{=} 1$				

```
while not solved :
    unit propagate
    if conflict :
        learn
        backtrack
    else :
        decide variable
```

while not solved :
 unit propagate
 if conflict :
 learn
 backtrack
 else :
 decide variable

$x \lor y$	$x \vee \overline{y} \vee z$	$x \vee \overline{y} \vee \overline{z}$	$\overline{x} \lor y$	$\overline{x} \lor \overline{y}$
Datab	ase			
x				
Assigr	nment			
$x \stackrel{x}{=} 1$	$y \stackrel{\overline{x} \lor y}{=} 1$			

while not solved :
 unit propagate
 if conflict :
 learn
 backtrack
else :
 decide variable

$x \lor y$	$x \vee \overline{y} \vee z$	$x \vee \overline{y} \vee \overline{z}$	$\overline{x} \lor y$	$\overline{x} \lor \overline{y}$
Datab	ase			
$x \perp$				
Assign	nment			
$x \stackrel{x}{=} 1$	$y \stackrel{\overline{x} \lor y}{=} 1$			

Say there is a conflict with variable z

 $x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z}$ Assignment ρ $x \stackrel{d}{=} 0 \quad y \stackrel{x \lor y}{=} 1 \quad z \stackrel{x \lor \overline{y} \lor z}{=} 1$

- Say there is a conflict with variable z
- Some clause $C \vee \overline{z}$ caused the conflict

$x \lor y$	$x \vee \overline{y} \vee z$	$x \vee \overline{y} \vee \overline{z}$
Assign	ment ρ	
$x \stackrel{d}{=} 0$	$y \stackrel{x \lor y}{=} 1$	$z \stackrel{x \vee \overline{y} \vee z}{=} 1$

- Say there is a conflict with variable z
- Some clause $C \vee \overline{z}$ caused the conflict
- Another clause $D \lor z$ propagated z

 $x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z}$ Assignment ρ $x \stackrel{d}{=} 0 \quad y \stackrel{x \lor y}{=} 1 \quad z \stackrel{x \lor \overline{y} \lor z}{=} 1$

- Say there is a conflict with variable z
- Some clause $C \vee \overline{z}$ caused the conflict
- Another clause $D \lor z$ propagated z
- Use resolution rule to derive $C \lor D$.

$x \lor y$	$x \vee \overline{y} \vee z$	$x \vee \overline{y} \vee \overline{z}$
Assign	ment ρ	
$x \stackrel{d}{=} 0$	$y \stackrel{x \lor y}{=} 1$	$z \stackrel{x \vee \overline{y} \vee z}{=} 1$
	<i>y</i> -	
Decel	at a co	

Resolution				
$x \vee \overline{y} \vee z$	$x \vee \overline{y} \vee \overline{z}$			
$x \lor \overline{y}$				

- Say there is a conflict with variable z
- Some clause $C \vee \overline{z}$ caused the conflict
- Another clause $D \lor z$ propagated z
- Use resolution rule to derive $C \lor D$.
- Remove z from assignment.

 $x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z}$ Assignment $\rho \setminus \{z\}$ $x \stackrel{d}{=} 0 \quad y \stackrel{x \lor y}{=} 1$

 x $\forall \overline{y} \lor z$ x $\forall \overline{y} \lor \overline{z}$

 x $\forall \overline{y} \lor \overline{y}$

- Say there is a conflict with variable z
- Some clause $C \vee \overline{z}$ caused the conflict
- Another clause $D \lor z$ propagated z
- Use resolution rule to derive $C \lor D$.
- Remove *z* from assignment.
- ρ falsifies C, ρ falsifies $D \Rightarrow \rho \setminus \{z\}$ falsifies $C \lor D$.

 $x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z}$ Assignment $\rho \setminus \{z\}$ $x \stackrel{d}{=} 0 \quad y \stackrel{x \lor y}{=} 1$

 x $\forall \overline{y} \lor z$ x $\forall \overline{y} \lor \overline{z}$

 x $\forall \overline{y} \lor \overline{y}$

- Say there is a conflict with variable z
- Some clause $C \vee \overline{z}$ caused the conflict
- Another clause $D \lor z$ propagated z
- Use resolution rule to derive $C \lor D$.
- Remove *z* from assignment.
- ρ falsifies C, ρ falsifies $D \Rightarrow \rho \setminus \{z\}$ falsifies $C \lor D$.
- Repeat until there is no reason for propagation.

 $x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z}$ Assignment $\rho \setminus \{z\}$ $x \stackrel{d}{=} 0 \quad y \stackrel{x \lor y}{=} 1$

 x $\lor \overline{y} \lor z$ x $\lor \overline{y} \lor \overline{z}$

 x $\lor \overline{y} \lor \overline{y}$

The Power of CDCL Solvers

All CDCL proofs are resolution proofs Lower bound for resolution length \Rightarrow lower bound for CDCL run time

*(Ignoring preprocessing)

The Power of CDCL Solvers

All CDCL proofs are resolution proofs Lower bound for resolution length \Rightarrow lower bound for CDCL run time

*(Ignoring preprocessing)

And the opposite direction?

Theorem [Pipatsrisawat, Darwiche '09; Atserias, Fichte, Thurley '09] $CDCL \equiv Resolution$

- CDCL can simulate any resolution proof
- Assumes optimal decision and erasure heuristics

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_1 + \cdots + x_n = n/2$ needs exponentially many clauses

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_1 + \cdots + x_n = n/2$ needs exponentially many clauses

Pseudo-Boolean constraints more expressive

$$x_1 + \dots + x_n \ge n/2$$

$$\overline{x_1} + \dots + \overline{x_n} \ge n/2$$

Build solvers with pseudo-Boolean constraints?

CDCL with pseudo-Boolean constraints is tricky

 Several variables can propagate in one go

$$2x + y + z \ge 2$$

Assignment		
$x \stackrel{d}{=} 0$		

CDCL with pseudo-Boolean constraints is tricky

 Several variables can propagate in one go

$$2x + y + z \ge 2$$

Assignment

$$x \stackrel{\mathsf{d}}{=} 0 \quad y \stackrel{2x+y+z\geq 2}{=} 1 \quad z \stackrel{2x+y+z\geq 2}{=} 1$$

- Several variables can propagate in one go
- Derived constraint not always falsified by assignment

$x_1 + 2\overline{x_3} + x_4 + 2x_6 \ge 2$	$x_2 + x_5 + 2\overline{x_6} \ge 2$					
Assignment						
$x_1 \stackrel{d}{=} 0 x_2 \stackrel{d}{=} 0 x_3 \stackrel{d}{=} 1$						
Database						
DalaDase						

- Several variables can propagate in one go
- Derived constraint not always falsified by assignment

$x_1 + 2\overline{x_3}$	$+2\overline{x_3}+x_4+2x_6\geq 2$		$x_2 + x_5 + 2\overline{x_6} \ge 2$		
Assignment					
$x_1 \stackrel{\rm d}{=} 0$	$x_2 \stackrel{d}{=} 0$	$x_3 \stackrel{d}{=} 1$	$x_6 \stackrel{x_1+2\overline{x_3}+x_4+2x_6 \ge 2}{=} 1$		
Database					

- Several variables can propagate in one go
- Derived constraint not always falsified by assignment

$$x_1 + 2\overline{x_3} + x_4 + 2x_6 \ge 2 \qquad x_2 + x_5 + 2\overline{x_6} \ge 2$$

Assignment
$$x_1 \stackrel{d}{=} 0 \qquad x_2 \stackrel{d}{=} 0 \qquad x_3 \stackrel{d}{=} 1$$

Database

$$x_1 + x_2 + 2\overline{x_3} + x_4 + x_5 \ge 2$$

CDCL with pseudo-Boolean constraints is tricky

- Several variables can propagate in one go
- Derived constraint not always falsified by assignment

Yet all of this can be fixed

All pseudo-Boolean proofs are cutting planes proofs

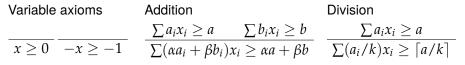
All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities $x \lor \overline{y} \to x + \overline{y} \ge 1 \equiv x + (1 - y) \ge 1$

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities $x \lor \overline{y} \to x + \overline{y} \ge 1 \equiv x + (1 - y) \ge 1$

Rules



All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities $x \lor \overline{y} \to x + \overline{y} \ge 1 \equiv x + (1 - y) \ge 1$

Rules

Variable axioms	Addition Div		Division
	$\sum a_i x_i \ge a$	$\sum b_i x_i \ge b$	$\sum a_i x_i \ge a$
$x \ge 0$ $-x \ge -1$	$\sum (\alpha a_i + \beta b_i) x$	$\alpha_i \geq \alpha a + \beta b$	$\sum (a_i/k) x_i \ge \lceil a/k \rceil$

Goal: derive $0 \ge 1$

Addition in Practice

Addition

$$\frac{\sum a_i x_i \ge a}{\sum (\alpha a_i + \beta b_i) x_i \ge \alpha a + \beta b}$$

- Unbounded choices
- Need a reason to add inequalities:
 - One conflicting variable
 - Conflict disappears after addition

Addition in Practice

Addition

$$\frac{\sum a_i x_i \ge a}{\sum (\alpha a_i + \beta b_i) x_i \ge \alpha a + \beta b}$$

- Unbounded choices
- Need a reason to add inequalities:
 - One conflicting variable
 - Conflict disappears after addition

Cancelling Addition

Some variable cancels: $\alpha a_i + \beta b_i = 0$

Division in Practice

Division

$$\frac{\sum a_i x_i \ge a}{\sum (a_i/k) x_i \ge \lceil a/k \rceil}$$

Too expensive

Division in Practice

Division

$$\frac{\sum a_i x_i \ge a}{\sum (a_i/k) x_i \ge \lceil a/k \rceil}$$

Too expensive

Saturation

 $\frac{\sum a_i x_i \ge a}{\sum \min(a, a_i) x_i \ge a}$

CP saturation general addition		CP division general addition
CP saturation		CP division

Power of subsystems of CP?

cancelling addition

cancelling addition

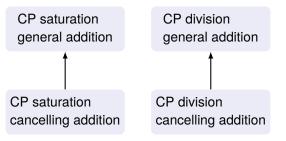
Resolution

Results

Theorem

On CNF inputs all subsystems as weak as resolution

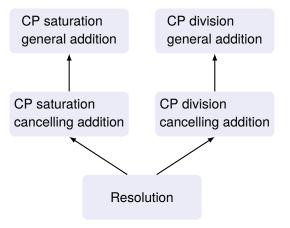
- No subsystem is implicationally complete
- Solver becomes very sensitive to the encoding



Cancelling addition is a particular case of addition

Resolution

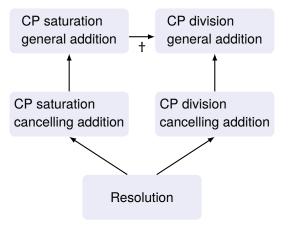
 $A \longrightarrow B$: B simulates A (with only polynomial loss)



All subsystems simulate resolution

- Trivial over CNF inputs
- Also holds over linear pseudo-Boolean inputs

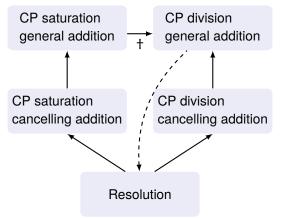
 $A \longrightarrow B$: B simulates A (with only polynomial loss)



Repeated divisions simulate saturation

 Polynomial simulation only if polynomial coefficients

 $A \longrightarrow B$: B simulates A (with only polynomial loss)



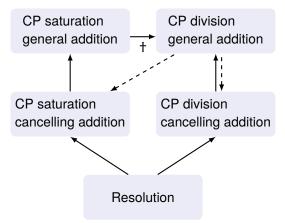
CP stronger than resolution

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in CP
- exponential in resolution

 $A \longrightarrow B$: B simulates A (with only polynomial loss) A - \Rightarrow B: B cannot simulate A (separation)



 $Cancellation \equiv Resolution$

Over CNF inputs

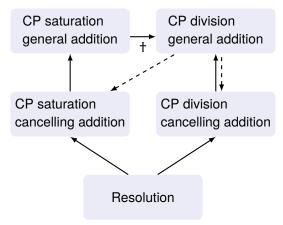
[Hooker '88]

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in CP
- exponential in resolution

 $A \longrightarrow B$: B simulates A (with only polynomial loss) A - \Rightarrow B: B cannot simulate A (separation)



 $A \rightarrow B$: B simulates A (with only polynomial loss) A - \rightarrow B: B cannot simulate A (separation)

t: known only for polynomial-size coefficients

 $Cancellation \equiv Resolution$

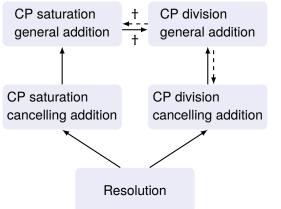
Over CNF inputs

[Hooker '88]

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in CP
- exponential in CP with cancelling addition and any rounding



Saturation \equiv Resolution

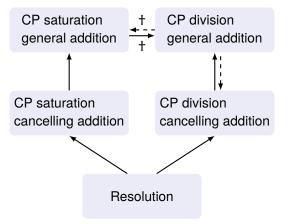
Over CNF inputs

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in CP
- exponential in resolution

 $A \longrightarrow B$: B simulates A (with only polynomial loss) A - \Rightarrow B: B cannot simulate A (separation)



 $A \rightarrow B$: *B* simulates *A* (with only polynomial loss) *A* - \rightarrow *B*: *B* cannot simulate *A* (separation)

t: known only for polynomial-size coefficients

Saturation \equiv Resolution

Over CNF inputs

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in CP
- exponential in CP with general addition and saturation

Easy Formulas

Pseudo-Boolean solvers \equiv CP? No

Question

PB solvers \equiv CP with cancelling addition and saturation?

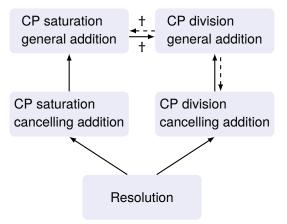
Easy Formulas

 $\label{eq:pseudo-Boolean solvers} \mathsf{ECP?}\ \mathsf{No}$

QuestionPB solvers \equiv CP with cancelling addition and saturation?

Craft combinatorial formulas easy for CP with cancelling addition and saturation

- All formulas without rational solutions
- Easy versions of NP-hard problems



 $A \longrightarrow B$: B simulates A (with only polynomial loss) A - \Rightarrow B: B cannot simulate A (separation)



Pseudo-Boolean versions of

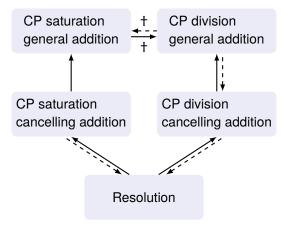
- Pigeonhole principle
- Subset cardinality

have proof of size

. . .

- polynomial in all CP subsystems
- exponential in resolution

- $A \longrightarrow B$: B simulates A (with only polynomial loss) A - \Rightarrow B: B cannot simulate A (separation)
- +: known only for polynomial-size coefficients



 $A \longrightarrow B$: B simulates A (with only polynomial loss) A - \Rightarrow B: B cannot simulate A (separation)

t: known only for polynomial-size coefficients

Pseudo-Boolean versions of

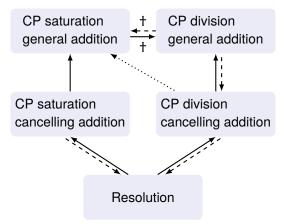
- Pigeonhole principle
- Subset cardinality

have proof of size

. . .

- polynomial in all CP subsystems
- exponential in resolution

CNF version exponential \Rightarrow Cannot recover encoding \Rightarrow Subsystems are incomplete



Separation candidates Some formulas have proof of size

- polynomial in CP with cancelling addition and division
- unknown in CP with general addition and saturation

- $A \longrightarrow B$: B simulates A (with only polynomial loss)
- $A \rightarrow B$: B cannot simulate A (separation)
- $A \cdots \triangleright B$: candidate for a separation
- +: known only for polynomial-size coefficients

Marc Vinyals (KTH)

Bad News

- On CNF inputs subsystems of CP ≡ resolution
- Subsystems of CP implicationally incomplete

Bad News

- On CNF inputs subsystems of CP ≡ resolution
- Subsystems of CP implicationally incomplete

Good News

- Many formulas where PB solvers can shine
- Do PB solvers shine in practice?

Bad News

- On CNF inputs subsystems of CP ≡ resolution
- Subsystems of CP implicationally incomplete

Good News

- Many formulas where PB solvers can shine
- Do PB solvers shine in practice? (Stay tuned...)

Bad News

- On CNF inputs subsystems of CP ≡ resolution
- Subsystems of CP implicationally incomplete

Good News

- Many formulas where PB solvers can shine
- Do PB solvers shine in practice? (Stay tuned...)

Thanks!