Better Evaluations by Analyzing Benchmark Structure

Norbert Manthey and Sibylle Mohle

Knowledge Representation and Reasoning Group
Technische Universitdt Dresden
Dresden, Germany

Abstract

We present a method for improving the efficiency of SAT solver benchmarking. The increase in
efficiency is achieved by removing redundant formulae from the benchmark for the evaluation and
then mapping back the results on the entire benchmark. Experiments confirm the accurateness of our
method along with a computation time reduction. The redundancy contained in the benchmark causes
a bias in the evaluation result as well and therefore has an impact on its significance, particularly if
multiple benchmarks are combined. We illustrate this effect by an example and pinpoint the structure
of the benchmarks used for the competitive events performed since 2002. We focus on SAT, however,
the presented results are of interest for other competitions as well.

1 Introduction

Since 2002, annual competitions are organized and induced SAT researchers to submit their
tools. The publicly available benchmarks of these events have been used to evaluate additions
to the basic conflict driven clause learning (CDCL) algorithm. This evaluation requires com-
putationally expensive experiments. However, not every research group has an appropriate
hardware at its disposition and accessing publicly available resources may not be an option.
The need for increasing the efficiency of solver evaluation while preserving the expressiveness
of the results is therefore evident.

The interpretation of the evaluation outcome is problematic if duplicates of a formula are
present notably in the combination of multiple benchmarks. Consider the following example:
Two benchmarks A and B consist of 300 formulae each, with 100 formulae occurring in both
benchmarks. Hence, in our example, the combined benchmark contains 100 duplicates. We
denote the set of the remaining 500 formulae by set of unique formulae and the formulae
contained in it simply by uniques, since they are contained only once in this set. Imagine a
solver X solving 200 formulae contained in A and 200 formulae contained in B with 50 of these
formulae occurring in both A and B. In total, X solved 400 formulae, and one might be inclined
to conclude that when executed on other benchmarks, X will solve 400/600 = 66.67 % of all
formulae as well. Actually, only 350 of them are uniques, and hence, X solved 350/500 = 70 %
of the unique formulae, since 50 of the solved formulae are duplicates. Note that if a formula
is solved, its duplicate will also be solved. This fact has an impact on the assessment of the
evaluation result. We illustrate it by further elaborating our example. Let us now imagine that
a novel extension of X is tested on the same data and, again, 200 formulae contained in A and
200 formulae contained in B are solved, while, this time, 100 of these formulae are duplicates.
As in the first experiment, 66.67 % of all formulae are solved, but the percentage of solved
unique formulae amounts to 300/500 = 60 %, which is 10 % less than before. The tested solver
extension evidently exploits the presence of duplicates, i.e., the redundancy, in the benchmark,
but this property goes unnoticed if the benchmark structure is ignored. For this reason, it
is not possible to predict how X will perform on a different combination of benchmarks C,
unless the percentage of duplicates in C' is comparable to that of the combination of A and B.

Knowledge concerning the structure of the benchmark — notably the redundancy contained in
it — is therefore crucial. Furthermore, it is very hard to reason about an experimental evaluation
on two benchmarks if the details on the intersection are not known. In this case, only one of
the two benchmarks can be used for reasoning.

Broadening the notion of duplicates introduced in our example, feature-equivalence of for-
mulae is defined as the equality of formulae with respect to their features. Based on feature-
equivalence, we introduce the concept of redundancy in a benchmark, which in our example
corresponds to the multiset of duplicates. These notions facilitate the investigation of the
structure of a combination of benchmarks and thus allow for an unbiased assessment of the
evaluation results. We analyze the structure of the benchmarks used in competitive SAT events
so far and demonstrate its impact on the evaluation results.

Despite the need for increasing the efficiency of solver evaluation, to the author’s best
knowledge, no ongoing research exists in this field. Experiments presented in publications the
authors are aware of are executed on a full benchmark, and in the interpretation of the results
the structure of the benchmark is not considered. Usually, results are presented on a per year
basis. We show how solver evaluation can be sped up by exploiting the redundancy present in
the combination of benchmarks. Suitable tools as well as the features calculated for all formulae
are provided. Experiments performed using Glucose 3.0', Lingeling baq?, and Riss 6° show the
feasibility of our approach.

In this work, we are focussing on SAT. However, adapting our results to other problems,
e.g., QBF, MaxSAT, PB, CSP, and AIG, is straightforward. Therefore, the presented findings
are relevant for the evaluation of solvers competing in these related fields as well.

The paper is structured as follows: After recalling some preliminary terms, presenting back-
ground information and introducing an adequate terminology, in Section 3 we analyze the
benchmarks of all competitive events between 2002 and 2015. In Section 4, we present a method
for performing solver evaluations on a reduced set of formulae by exploiting redundancy in the
benchmarks. An experimental evaluation is reported in Section 5, before in Section 6 we con-
clude and point out future work in Section 7.

2 Preliminaries

2.1 The Satisfiability Problem

Let the set of Boolean variables V be the set of the positive natural numbers, i.e., V = N*. A
literal v is a positive Boolean variable v or a negated Boolean variable T. A clause C' is a set
of literals, and a formula F in conjunctive normal form (CNF) is a multiset of clauses, since it
can contain duplicate clauses.

We assume the reader to be familiar with the basic concepts of propositional logic and SAT

solving. More details about the used concepts can be found in [5].

2.2 Benchmarks and CNF Features

The formulae on which we evaluated our approach were downloaded from satcompetition.org,
choosing only packages that have been used in competitions.

Lhttp://baldur.iti.kit.edu/sat-race-2015/descriptions/glucose-satracel5.pdf
2http://baldur.iti.kit.edu/sat-race-2015/descriptions/fmv-solvers-sat-race-2015.pdf
3Submitted to the SAT Competition 2016

satcompetition.org

For each CNF formula, various numerical features were computed using classifier, a tool
which is built by a call to Riss 6 with the appropriate parameters. classifier first performs
unit propagation and then removes all satisfied clauses and falsified literals from the formula,
similarly to a simple preprocessor of a SAT solver. On the resulting formula, the features
were computed. In this work, we use 196 features based on the clause size distribution, the
symmetry breaking features, the binary implication graph, the recursive weight heuristics and
the constraint extraction?. For details on the features used in our work see [1].

All features mentioned above are rotation-invariant, which makes them immune to the
renaming of variables and reordering of clauses in formulae. However, the data in Table 1
confirm that the precision of the generated features is accurate enough to discriminate between
formulae.

2.3 Redundancy in Benchmarks

In our approach, comparing formulae is essential. To this end, we introduce the notion of
feature-equivalence. We call two formulae F' and G feature-equivalent if the values of all their
features are equal. A duplicate of a formula F' in this context denotes a formula which is feature-
equivalent to F'. Duplicates account for the redundancy in a benchmark. We call a benchmark
redundancy-free if it contains just a single representative formula of each equivalence class in the
partitioning by feature-equivalence. A redundancy-free extract of a benchmark is a redundancy-
free benchmark obtained from a given benchmark by picking a representative from each of its
equivalence classes in the partitioning by feature-equivalence. We denote these representatives
by unique formulae or simply by uniques.

3 Analyzing Benchmarks of Competitive Events

Since 2002, annual competitions are organized with the aim to evaluate SAT solvers on various
sets of benchmarks. These competitions run tracks for application formulae as well as for hard
combinatorial (also called handmade or crafted) problems. Each year, the organizers of the
competition issue a call for novel formulae for these tracks and generate a benchmark based on
some criteria, e.g., [2, 3].

3.1 Distribution of Formulae Among Benchmarks

Most competition benchmarks contain novel formulae as well as problems already included in
earlier benchmarks. We examined the composition of the benchmarks for the application track
since 2002. Our main objective was to determine the portion of novel formulae on the one
hand and to identify redundancy on the other hand. For determining the number of feature-
equivalent formulae, the order of the clauses was retained fixed, and the literals in a clause were
sorted — as this procedure is performed in most SAT solvers. Unit propagation was performed
in the order of the occurrence of units in the formula and with respect to the introduction of
new units during propagation. Finally, falsified literals were removed from the formula. The
results are visualized in Table 1.

As an example, the 2004 competition benchmark (shown in row 04) comprises 18 formulae
introduced in 2002 (column 02), 8 formulae submitted for the first time in 2003 (column 03),
and 298 new problems (column 04). In total, the benchmark contains 324 formulae (X), 91.97%
of which are new (N), and there are 315 uniques (U) and 9 duplicates (D). 98 formulae introduced

4The exact call is . /classifier -no-clausesf -no-resf -no-zor -no-varf -no-derivativef -big -rwhf -const.

Table 1: Every year’s benchmark (rows 02 to 15) consists of novel formulae as well as formulae
already contained in earlier competition benchmarks (columns 02 to 15). Since 2008, the
portion of novel formulae (column N) amounts to approximately 50 %. The number of uniques
and duplicates is shown in columns U and D, respectively. Row R indicates the number of
formulae used in subsequent benchmarks.

02 03 04 05 06 07 08 09 10 11 12 13 14 15 > N U D
02 829 829 100% 827 2
03 0 119 119 100% 119 0
04 18 8 298 324 91.97% 315 9
05 0 0 0 176 176 100% 175 1
06 5 5 14 5 71 100 71% 100 O
o7 0 0 O 15 20 140 175 80% 175 0
08 7 7 30 10 26 11 109 200 54.5% 187 13
09 4 11 12 9 28 54 13 161 292 55.1% 292 0
10 0 1 0 3 7 17 6 23 43 100 43% 100 0O
1 12 16 7 10 7 19 11 28 11 179 300 59.67% 299 1
12 28 28 35 19 31 69 28 82 9 89 182 600 30.33% 558 42
3 0 9 0 8 10 18 3 33 3 32 26 158 300 52.67% 300 O
14 1 14 0 4 3 14 9 38 4 29 20 12 152 300 50.67% 299 1
15 1 2 0 3 0 9 5 19 1 13 8 3 69 167 300 55.67% 291 9

R 76 101 98 86 132 211 75 223 28 163 54 15 69

in 2004 are reused in subsequent competition benchmarks (row R). Note that in this table we
do not discriminate between single and multiple reuse of formulae.

From 2008 on, the novel formulae (column N) make up approximately one half of the bench-
mark. We found that in the benchmarks of 2002, 2004, 2005, 2011, 2012, 2014, and 2015,
feature-equivalent formulae are contained®.

3.2 Redundancy in Combined Benchmarks

Usually, researchers evaluate their solver extensions on a benchmark of a single competition, e.g.,
the most recent one. One reason might be that research groups lack computational resources
to execute solvers on a larger benchmark. On the other hand, reviewers request evaluations
on a wider range of benchmarks. In Section 4, we present a method for speeding up solver
evaluation by exploiting the redundancy present in combined benchmarks. This redundancy
has a direct impact on the achievable speedup as the main idea of the proposed method consists
in restricting the experiment to the redundancy-free extract of the combined benchmarks. As
an example, the data in Table 2 represent the portion of the formulae which can be ignored
when performing an evaluation based on the benchmarks of two competitive events. Indicating
the numbers for the combination of more events is beyond the scope of this paper®.

The data in Table 2 may be interpreted in two different ways: On the one hand, the data

5In 2008, there were two competition phases where formulae were used in both phases. This lead to the
reported duplicates.

6For this purpose, we provide a collection of scripts that can be adapted to extract the set of unique formulae
from an arbitrary multiset of formulae.

Table 2: Redundancy in the combination of the benchmarks of two competitive events. The
presented values refer to the relative amount (in percent) of duplicates in the combination of
the benchmarks of the year indicated in the row and column head, respectively.

02 03 04 05 06 07 08 09 10 11 12 13 14

03 0.21
04 252 3.84
05 0.30 0.34 2

06 0.75 2.28 6.84 2.17

07 020 O 1.80 4.56 9.09

08 2.04 596 10.88 5.85 16.33 10.40

09 054 2.68 5.36 214 1097 16.49 11.59

10 0.22 0.46 236 1.45 450 9.45 9 9.69

11 1.33 4.06 3.53 252 3 526 6.2 980 6

12 448 9.04 10.70 7.22 13.43 17.03 16.25 22.65 12.71 22.56

13 0.18 215 1.76 1.89 3.50 5.68 540 878 3.75 10 18.89

14 035 3.58 2.56 1.26 2 4 5.80 10.64 4.75 9.67 1822 15.33

15 1.06 2.63 3.21 273 225 442 580 6.59 450 6.33 12 817 23.83

represent the portion of computational resources which can be saved. As an example, if a
solver is evaluated on the combination of the 2009 and 2012 benchmarks, this saving amounts
to 22.65%. Hence, it is sufficient to perform the computation on 77.35% of the benchmark
data, since it provides the information needed for inferring the results for the redundant portion
of the benchmark. On the other hand, results presented for two competitive events have to be
read with a grain of salt. In the combination of the 2009 and 2012 benchmarks, 22.65% of
the formulae actually are duplicates. A solver modification exploiting this knowledge might
be emphasized on this combination of benchmarks, as this modification is especially effective
on duplicate formulae, while failing on another combination (as discussed in Section 1). The
data in Table 2 point this weakness out, encouraging developers to present evaluations on
benchmarks containing distinct formulae only, or to include a discussion on the evaluation on
the intersection of benchmarks.

An extreme case in our data is represented by the combination of the benchmarks of 2014
and 2015. In this data set, 76.17% percent of the formulae are unique, thus the saving of
computation amounts to 23.83 %. Hence, solvers applying appropriate techniques might perform
best on this combination and worst on the combination of the 2003 and 2007 benchmarks, since
the latter combination lacks redundancy. Therefore, it is essential to analyze the benchmark
structure in order to make significant predictions concerning the solver performance on new
benchmarks.

An even more important fact has to be considered: Benchmarks are combined with the aim
to obtain a larger and more representative data set to perform an evaluation on. With this
intention in mind, one would expect to obtain more meaningful results. However, due to the
redundancy in the benchmark, the results are biased and a clear conclusion cannot be drawn if
they are reported only per year.

Table 3: Redundancy in the composition of benchmarks for intervals. For each year (02 —
15), the number of formulae (X), the number of unique formulae (U) and the percentage of
unique formulae (U(%)) rounded to one decimal place, and the respective average values of
their increase (¢A) are listed for the combination of all benchmarks from 2002 to the year
referred to in the column header.

02 03 04 05 06 07 08 09 10 11 12 13 14 15 gA

Y 829 948 1272 1448 1548 1723 1923 2215 2315 2615 3215 3515 3815 4115 252.77
U 827 946 1235 1410 1481 1621 1728 1889 1932 2111 2293 2451 2603 2761 148.77
U(%) 99.8 99.8 97.0 974 95.7 94.1 89.9 85.3 83.5 80.7 71.3 69.7 68.2 67.1 -2.52

4 Speeding up Evaluations

The weakness pointed out in Section 3.2 can also be turned into a benefit: In order to be
able to present an evaluation on multiple competitive events, the actual computation can be
restricted to a subset of the benchmark, namely to its redundancy-free extract. From the results
obtained on this set of uniques, the results for the duplicates can be inferred. As an example,
for comparing a novel solver to existing systems on the combination of the benchmarks of 2014
and 2015, by adopting this approach the computation is reduced by 23.83 %7. To this end, we
propose the following tool chain:

1. select the benchmarks to be used for the evaluation;

2. collect all formulae;

3. compute the redundancy-free extract of the combined benchmarks;
4. perform the evaluation on this redundancy-free benchmark; and

5. duplicate the results for duplicate formulae.

Along with this publication we provide tools that, given a benchmark, perform steps 3 to 5.
By means of this procedure, computational resources are saved. The reduction depends on the
portion of redundancy contained in the benchmark combination and may be significant. We
investigated its effect on the combination of benchmarks for all intervals ranging from 2002 to
2015. The results are presented in Table 3.

The data show that both the number of novel formulae (represented by the increase of X)
and the number of unique formulae (U) increase with time, the mean increase of the latter being
about 60 % of the increase of the former (gA). The percentage of the unique formulae (U (%))
therefore decreases with time, resulting in the fact that the more competitive events are added
to the series, the higher is the potential for saving computational resources. As an example,
when evaluating a tool for all instances, 67.1 % of the formulae have to be considered. The
computation saved therefore amounts to 32.9 %. These trends are visualized in Figure 1.

Summing up, solver evaluation should be carried out on a redundancy-free benchmark.
This method eliminates side effects stemming from redundancy in the benchmarks on which
the evaluation is performed, and, thus, allows for a meaningful assessment of the robustness of
an approach with respect to the given benchmark®. As discussed before, if the evaluation is
reported on a per year basis, its outcome on the intersection of the presented benchmarks has
to be discussed as well.

7 Assuming a uniformly distributed run time of the tools.
8Discussing how a good benchmark should be selected for a representative evaluation is beyond the scope
of this work. See [6] for more details.

4,500
4.000 | —e— all formulae d
- - novel formulae

3,500 |
3,000 |
2,500 |
2,000 |
1,500 |
1,000
500 | =
0

number of formulae

T T T T T T T T T T T T
02 03 04 05 06 07 08 09 10 11 12 13 14 15
year

1 L ———
0.9 The -
0.8 . I
0.7 h R
0.6 | |
0.5 |
0.4 |
0.3 |
0.2 |
0.1 |

0

portion of novel formulae

T T T T T T T T T T T T
02 03 04 05 06 07 08 09 10 11 12 13 14 15
year

Figure 1: Trend regarding the composition of benchmarks for intervals from 2002. In the upper
figure, the trend with respect to the number of formulae and the number of novel formulae
is visualized for the combination of all benchmarks from 2002 until the year indicated on the
x-axis. The number of novel formulae shows a slower increase than the number of all formulae,
hence the the portion of novel formulae decreases with time, as shown in the figure below.

5 Results

The procedure presented in Section 4 was tested using Glucose 3.0, Lingeling baq, and Riss 6.
As test data, we chose all application benchmarks used in the competitive events from 2002
to 2015. The experiment was run on a cluster where each node is equipped with 2 Intel Xeon
CPU E5-2680 v3 with 12 cores running at 2.50 GHz. Each process was run with a CPU time
limit of 1 hour and a main memory limit of 6.5 GB using every 4th core.

In a first step, we executed steps 3 to 5 of our tool chain obtaining evaluation results on the
redundancy-free extract of the combined benchmarks and the results mapped onto the entire

Table 4: The entries show the results of the evaluation executed on the redundancy-free extract
of the combined benchmarks, after mapping the results to the entire benchmark, and the
evaluation conducted on the entire benchmark. usc, # solved, total time and PAR denote
unique solver contribution, number of instances solved, total run time and penalized average
run time, respectively.

experiment solver usc # solved total time [s] = PAR [h]
Glucose 3.0 14 2117 453120 769.87
redundancy-free extract Lingeling baq 88 2213 521379 692.83
Riss 6 44 2155 540352 756.10
Glucose 3.0 31 3261 899943 1103.98
mapped formulae Lingeling baq 152 3393 1029790 1008.05
Riss 6 69 3293 1024330 1106.54
Glucose 3.0 31 3256 890734 1106.43
full benchmark Lingeling baq 151 3388 1007180 1006.77
Riss 6 68 3297 1035320 1105.59

formula multiset. In a second step, we ran the solvers on all formulae, including the ones that
were not evaluated in the first step. Recall from Table 3 that the combination of all benchmarks
used in competitive events since 2002 comprises 4115 formulae, 2761 of which are unique. The
portion of unique formulae hence amounts to 67.1%. One would therefore expect run time
savings in the size of 32.9 % compared to the evaluation on the entire benchmark. The results
are presented in Table 4.

The unique solver contribution (ucs) refers to the number of formulae solved only by the
respective solver. The total time refers to the run time used for the instances which were solved.
The penalized average run time (PAR) is obtained by adding to the total run time the number
of unsolved formulae multiplied by the timeout. It therefore accounts for unsolved instances as
well, and it should also be affected by the run time saving due to the exploitation of redundancy
in the benchmark. From the results obtained from the run on the redundancy-free extract of
the combined benchmarks, the run times for the entire benchmark are computed by duplicating
the appropriate run time for the duplicate formulae. In the same manner, the number of solved
instances was calculated for the entire benchmark. The data for mapped formulae therefore
represent what we expect to find when the experiment is run on the entire benchmark.

Let us compare the results for the mapped formulae and the full benchmark. The usc is very
accurate, it differs by 1 for Lingeling and Riss and is equal for Glucose. The differences in the
number of solved instances amount to 0.15% for Glucose and Lingeling, and 0.13 % for Riss,
respectively. The differences for Glucose, Lingeling, and Riss concerning the total time amount
to 1.02%, 2.2%, and 1.06 %, respectively. Riss was slower than expected while Glucose and
Lingeling were faster than expected. The PAR is significantly more accurate: The differences
amount to 0.22 %, 0.13 %, and 0.13 % for Glucose, Lingeling, and Riss, respectively. For each of
the instances not solved, 1h is added to the PAR. Glucose shows a higher PAR than expected,
contrarily to Lingeling and Riss. Differences of this scale may also be due to the run time
environment.

The PAR value of the solvers represents a meaningful value for the given evaluation. As we
use a penalty factor of 1 (contrary to the commonly used PARI10 score), the PAR value of a

solver refers to the time required by this solver to perform the evaluation. By comparing the
values for the unique formulae and the full benchmark, calculating the saving is straightforward:
We save 336.56, 313.94 and 349.49 hours for the three solvers. The amount of computational
resources saved can be used for evaluating an additional solver on the same benchmark. The
computation time for the features on all crafted and application formulae that are available
from 2002 to 2015, including the unused formulae, amounts to about 60 hours. Hence, for the
selected benchmark, the usage of the presented procedure already pays when one single solver
is evaluated. Note that, in this work we considered application formulae only.

6 Conclusions

Evaluation and benchmarking are important and are affected by the setup and the used bench-
marks. We therefore analyzed the structure of the application benchmarks used in the com-
petitive SAT events between 2002 and 2015. We introduced the notion of feature-equivalence
in order to identify duplicate formulae accounting for the redundancy in a benchmark. If a
solver is evaluated on a benchmark containing redundancy, it is not possible to predict its per-
formance on a different benchmark, unless either this benchmark contains the same portion of
redundancy or the solver does not exploit this redundancy. Therefore, the solver’s performance
on the redundant formulae has to be taken into account in the discussion on evaluation results.
We showed that from 2008, the benchmarks contained about 50 % novel formulae. For this
reason, the most promising approach to be placed well in the current year’s competition is to
optimize a solver for last year’s benchmark.

We propose a method for saving computational resources when a solver is evaluated on
a combination of benchmarks. This saving is achieved by performing the evaluation on the
redundancy-free extract of the combined benchmarks and amounts to the portion of the redun-
dancy contained in the combined benchmarks. For the combination of all application bench-
marks used in the competitive SAT events between 2002 and 2015, by this method about 30 %
of the run time is saved. We provide appropriate tools to

1. extract features;
2. match duplicate formulae (based on features); and
3. scale the evaluation on the redundancy-free extract up to the full benchmark again.

These tools will be available for download on our website? and facilitate the addition of novel
benchmarks in the future. With our method, developers can obtain meaningful evidence re-
garding a novel extension while saving computational resources. We present experimental data
confirming the suitability of the chosen features and the feasibility of our approach.

From our method, various data result, e.g., formula features, feature calculation period, and
run time of the solver. These data can be used for diverse learning tasks, e.g., determine feature
correlation or predict suitable solver configurations.

When reporting evaluation results for benchmarks of two (or more) years independently,
then a discussion on the formulae contained in the intersection of all used benchmarks has to
be presented. Otherwise, no clear conclusion can be drawn. We pointed out that for obtaining
an unbiased assessment, the evaluation results with respect to the redundancy have to be taken
into account. The higher the percentage of solved duplicate formulae, the worse the solver will
perform on novel formulae lacking redundancy. We emphasize that for this reason redundancy-
free benchmarks should be used for evaluating novel solvers and solver extensions. Evaluations

9http://tools.computational-logic.org/content/evaluation.php

should follow ideas proposed in publications, such as benchmark construction [6], or report
effects per family, as done in [4].

It would be best, of course, to provide a redundancy-free benchmark. Be it that enough new
formulae are available, the ideal solution consists in including only newly submitted formulae
in the benchmark. If formulae from old benchmarks have to be included, e.g., due to the lack of
benchmark data, redundancy-free benchmarks can be built by considering for every year formu-
lae submitted for the first time only. If old formulae are contained in a competition benchmark,
we suggest that a list of all included formulae per year is provided. Taking into account the
discussion of Section 3, this approach facilitates the determination of the redundancy in the
benchmark allowing for an unbiased solver evaluation.

As a final remark, we want to make both authors of experimental data as well as reviewers
aware, that whenever data for several independent benchmarks are or should be provided,
the question whether the benchmarks are actually independent has to be considered. For the
application track of the SAT competition benchmarks, we showed that most benchmarks are
not independent.

7 Future Work

There are several aspects which should be addressed in the future. In this work, we focus on
SAT solving. However, our results can be adapted to other problems, e.g., QBF, MaxSAT, PB,
CSP, and AIG, and are therefore of relevance for other competitions as well. To this end, an
analogon to the CNF features has to be identified for the respective problems. The definition
of such an analogon should be straightforward, since most of the features used in our work are
based upon graphs which can be constructed in most symbolic languages. In a next step, the
classifier applied for the computation of the formula features has to be adapted accordingly.
Evaluation method and assessment of the results principally remain unmodified. Our results are
therefore of interest for authors participating in other competitions as well, e.g., in HWMCC,
PB, MaxSAT, SMT, and QBF as well as Planning.

In this work, we addressed the application track of the SAT competition benchmarks. The
structure of the crafted benchmarks can be investigated by means of the tools we provide on
our website.

We used the features presented in [1]. However, different features could prove adequate as
well for identifying the redundancy contained in the combination of benchmarks.

Acknowledgments. The authors thank the DFG for supporting this work under the grant
HO 1294/11-1 and the ZIH of TU Dresden for providing the computational resources to produce
the experimental data for the empirical evaluation.

References

[1] Enrique Alfonso and Norbert Manthey. New CNF features and formula classification. In Daniel Le
Berre, editor, POS’14, volume 27 of EPiC Series, pages 57-71. EasyChair, 2014.

[2] Adrian Balint, Anton Belov, Marijn Heule, and Matti Jérvisalo, editors. Proceedings of SAT Com-
petition 2013; Solver and Benchmark Descriptions, volume B-2013-1. University of Helsinki, De-
partment of Computer Science Series of Publications B, 2013.

[3] Anton Belov, Daniel Diepold, Marijn J.H. Heule, and Matti Jarvisalo, editors. Proceedings of SAT
Competition 2014, volume B-2014-2 of Department of Computer Science Series of Publications B.
University of Helsinki, Helsinki, Finland, 2014.

[4] Armin Biere and Andreas Frohlich. Evaluating CDCL restart schemes. In POS’15, 2015.

[5] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

[6] Holger H. Hoos, Benjamin Kaufmann, Torsten Schaub, and Marius Schneider. Robust benchmark
set selection for boolean constraint solvers. In Giuseppe Nicosia and Panos M. Pardalos, editors,
LION 7, Revised Selected Papers, volume 7997 of LNCS, pages 138-152. Springer, 2013.

	Introduction
	Preliminaries
	The Satisfiability Problem
	Benchmarks and CNF Features
	Redundancy in Benchmarks

	Analyzing Benchmarks of Competitive Events
	Distribution of Formulae Among Benchmarks
	Redundancy in Combined Benchmarks

	Speeding up Evaluations
	Results
	Conclusions
	Future Work

