
Splatz SAT Solver

Armin Biere
Johannes Kepler Universität Linz

Pragmatics of SAT 2016

POS’16

Université de Bordeaux
Bordeaux, France

Monday, 4th July, 2016



Motivation 1

What do you really want to have in a SAT solver? Niklas asked in Austin . . .

common impression: Lingeling has too many stuff implemented

tuned to existing benchmarks, reached local minimum

implementing / tuning / debugging takes time and is error prone

hard to figure what is really important and hard to evaluate new ideas

Restart to figure out . . .

painful, since Lingeling is good on current benchmarks

taking away features (moving away from local minimum) solves less instances

but chance for simplifying design based on new insights

Glucose style restarts with exponential smoothing averages [POS’15]

using variable move to front (VMTF) instead of VSIDS [SAT’15]

experimenting with certain ideas is very hard to implement within Lingeling

inprocessing of SAT sweeping + blocked clause decomposition (BCD) [LPAR’13]

new subsumption algorithm (on learned clauses too)

Splatz @ POS’15



0 50 100 150 200

0
20

0
40

0
60

0
80

0
10

00

SAT'14 Competition Application Track Instances

Benchmarks

T
im

e 
(in

 s
ec

on
ds

)

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●
●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●
●●●●

●●●●●●●
●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●
●
●●●

●●●
●
●●

●●●
●●●

●●●
●
●●●●

●●
●●

●
●
●
●●

●●●

●●●

●

●
●●

●●

●●●

● Splatz
Lingeling



●

●

● ●

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Lingeling versus Splatz

Lingeling

S
pl

at
z

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●● ●●

●

●●●●●●●●●●●●●●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●●

●●
●

●

●

●

●

●

●

●

2d−strip−packing
argumentation
bio
crypto−aes
crypto−des
crypto−gos
crypto−md5
crypto−sha
crypto−vpmc
diagnosis
fpga−routing
hardware−bmc
hardware−bmc−ibm
hardware−cec
hardware−manolios
hardware−velev
planning
scheduling
scheduling−pesp
software−bit−verif
software−bmc
symbolic−simulation
termination



●

●
●

●
● ●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

25
0

30
0

Simplifications / Inprocessing SAT'14 Application Track Benchmarks

Inprocessing Round

B
en

ch
m

ar
ks

● Lingeling
Splatz



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●

●●●
●●●●●●

●●
●●●●●●

●●
●●
●●
●●●●

●●●●●
●●●

●●●●●
●●●●

●●●●
●●●

●
●●●●

●●●●●●

●
●●●●●

●●●●●

●
●●
●●

●●

●

●●●●
●●●

●●
●●●●

●●●
●

0 50 100 150 200 250 300

0
10

0
20

0
30

0
40

0

Time spent in BCD and SAT Sweeping

Benchmarks

T
im

e 
(in

 s
ec

on
ds

) ● Inprocessing
Subsume
Sweeping
BCD
BVE



SAT Sweeping and Blocked Clause Decomposition 6

Simulate structural SAT sweeping in CNF [LPAR’13]

uses blocked clause decomposition (BCD) instead of structural knowledge

blocked part of BCD acts as circuit (e.g., can be simulated)

goal is to find backbone variables and equivalences

relies on effectiveness of BCD (goal is highly unbalanced BCD)

Inprocessing version interleaved with CDCL search

original experiments in preprocessing mode

inprocessing can take learned facts into account

Inprocessing Results mixed

does not allow to effectively simulate “simple probing” in Lingeling

17,339 backbones and 39,696 equivalences through sweeping

while 3,897,113 ELS and 425,098 Failed Literals

difficult to find and tune good decomposition algorithms:

linear (70% / 54%), pure-linear (72% / 69%), pure-inverse (71% / 70%)

circuit structure for effective BCD is partially lost (in inprocessing)

Splatz @ POS’15



Issues with Subsumption 7

SATeLite style subsumption:

interleave bounded variable style elimination (BVE) . . .

. . . with backward subsumption:

go over all clauses C

try to find clause D with C ⊆ D

full occurrences, walk occurrence list of literal in with smallest entries

also tries to strengthen clauses

quite expensive if not bounded (number of occurrences checked)

particularly full occurrence lists prohibit use for learned clauses

Glucose keeps low glue learned clauses forever (even if subsumed)

MiniSAT just automatically discards them due to low activity

small learned clauses might subsume or strengthen even irredundant clauses

would be good to include subsumption checking on and with learned clauses too

new subsumption algorithm inspired by [BayardoPanda’11]

Splatz @ POS’15



New Subsumption Algorithm 8

as in SATeLite, MiniSAT, Glucose with BVE in phases

considers learned clauses as subsumed and subsuming clauses too

forward subsumption checking only needs one watch per clause

smallest clauses are checked for being subsumed first

literals in clauses sorted by number of occurrences

go over all other clauses in watch lists of literals in candidate subsumed clause

mark literals in candidate subsumed clause

first case: other clause same size

second case: other clause smaller then check all literals in it marked

third case: other clause larger then use merge sort style check

still can become costly and has to be limited

comparable in speed to the actual BVE phase

fast enough to be called once in a geometric schedule on learned clauses

Splatz @ POS’15



●●●●

●●

●●

●

●
●

●●●
●●
●●●

●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●
●●●●

●●●●
●

●
●
●

●
●
●

0 50 100 150 200 250 300

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Subsumed Irredundant and Redundant Clauses SAT'14 Application Track

Benchmarks

S
ub

su
m

ed
 C

la
us

es

● Redundant
Irredundant



Features (I) 10

arena based memory allocation for clauses and watchers Thank you, Norbert & Mate!

blocking literals (BLIT)

special handling of binary clause watches

literal-move-to-front watch replacement (LMTF)

learned clause minimization with poison

on-the-fly hyper-binary resolution (HBR)

learning additional units and binary clauses (multiple UIPs)

on-the-fly self-subsuming resolution (OTFS)

decision only clauses (DECO)

failed literal probing on binary implication graph roots

eager recent learned clause subsumption

Splatz @ POS’15



Features (II) 11

stamping based VMTF instead of VSIDS

subsumption for both irredundant and learned clauses

inprocessing blocked clause decomposition (BCD) enabling . . .

. . . inprocessing SAT sweeping for backbones and equivalences

equivalent literal substitution (ELS)

bounded variable elimination (BVE)

blocked clause elimination (BCE)

dynamic sticky clause reduction

exponential moving average based restart scheduling

delaying restarts

trail reuse

Splatz @ POS’15


