A Study on Implied Constraints in a MaxSAT Approach to B2B Problems

Miquel Bofill¹, Marc Garcia¹, Jesús Giráldez-Cru² and Mateu Villaret¹

2: Universitat de Girona (UdG), Girona, Spain 1: Artificial Intelligence Research Institute (IIIA-CSIC), Barcelona, Spain

> 7th Pragmatics of SAT workshop (POS'16) July 4, 2016

> > <ロ> (四) (四) (三) (三) (三) (三)

The B2B Scheduling Optimization Problem (I)

- A set of **Participants** \mathcal{P}
- A set of Meetings $\mathcal{M} \subset \mathcal{P} \times \mathcal{P}$
- Accommodation capacity:
 - A set of Time Slots ${\cal T}$
 - A set of Locations ${\cal L}$
- Meetings restrictions:
 - Forbidden time slots
 - Morning/Afternoon meetings

The B2B Scheduling Optimization Problem (I)

- A set of **Participants** \mathcal{P}
- A set of Meetings $\mathcal{M} \subset \mathcal{P} \times \mathcal{P}$
- Accommodation capacity:
 - A set of Time Slots ${\cal T}$
 - A set of Locations ${\cal L}$
- Meetings restrictions:
 - Forbidden time slots
 - Morning/Afternoon meetings

B2B Scheduling Problem (B2BSP)

Finding a total **mapping** from M to $T \times L$, without overlapping of meetings in time nor in location and respecting the meetings restrictions.

The B2B Scheduling Optimization Problem (II)

Feasibility of a Schedule

- Each participant has at most one meeting scheduled in each time slot.
- Every meeting is scheduled respecting meeting restrictions for any of its participants.
- At most one meeting is scheduled in a given time slot and location.
- Each meeting is scheduled in one and only one time slot.

The B2B Scheduling Optimization Problem (III)

Idle Time Periods

9:00	9:20	9:40	10:00	10:20	10:40	11:00	12:20	12:40	13:00
free	m_1	free	free	free	m_2	free	free	<i>m</i> 3	free
		hole 1			hol	e 2			

A B > A B >

The B2B Scheduling Optimization Problem (III)

	Time	Dariada
luie	TIME	i enous

9:00	9:20	9:40	10:00	10:20	10:40	11:00	12:20	12:40	13:00
free	m_1	free	free	free	<i>m</i> ₂	free	free	<i>m</i> 3	free
		hole 1			hol	e 2			

B2BSOP

... **minimizing** the total number of **idle time periods cumulatively** over all participants.

A B > A B >

The B2B Scheduling Optimization Problem (III)

	Time	Dariada
luie	TIME	i enous

9:00	9:20	9:40	10:00	10:20	10:40	11:00	12:20	12:40	13:00
free	m_1	free	free	free	<i>m</i> ₂	free	free	<i>m</i> 3	free
			hole 1			hol	e 2		

B2BSOP

... **minimizing** the total number of **idle time periods cumulatively** over all participants.

B2BSOP-h

... such that the **difference** between the number of idle time periods of the participants is **at most** a given parameter h (homogeneity).

B2B Encodings

Bofill, Espasa, Garcia, Palahí, Suy, Villaret. CP 2014.

- CP encoding.
- PB encoding.

Pesant, Rix, and Rousseau. CPAIOR 2015.

MIP encoding.

Global constraints (MIP and CP)

Bofill, Garcia, Suy, and Villaret. CPAIOR 2015.

• MaxSAT encoding.

- *schedule*_{*i*,*j*} : meeting *i* is scheduled in time slot *j*
- *usedSlot*_{p,j} : participant p has a meeting at time slot j
- fromSlot_{p,j}: participant p has a meeting at time slot j or before
- *tableCount* : at most one meeting scheduled in a time slot and location
- max/min/diff : homogeneity

Implied Constraint 1: The number of meetings of a participant p (derived from $usedSlot_{p,j}$) must match the total number of meetings of p.

 $exactly(|meetings(p)|, \{usedSlot_{p,j} \mid j \in \mathcal{T}\}) \ \forall p \in \mathcal{P}$

Implied Constraint 2: The number of participants having a meeting in a given time slot is bounded by twice the number of available locations.

 $atMost(2 \times nTables, \{usedSlot_{p,j} \mid p \in \mathcal{P}\}) \ \forall j \in \mathcal{T}$

"... extending the model with implied constraints ..., we can significantly improve the solving time."

"... extending the model with implied constraints ..., we can significantly improve the solving time."

Number of B2B instances used:

- 5 real-world instances.
- 15 instances crafted from them.

- When is beneficial the use of implied constraints?
- Does it **depend** on any **feature** of the problem?

Discussion:

- Can we use this analysis to better understand the efficiency of MaxSAT solvers?
- Can we extract general conclusions on the use of implied constraints to be applied in other problems?

Regular model

The **probability** that any participant **request** a meeting with another is exactly $U \in [0, 1]$.

A B > A B >

Regular model

The **probability** that any participant **request** a meeting with another is exactly $U \in [0, 1]$.

- The number of meetings requested by each participant follows a binomial distribution B(n, p), with n = P - 1 and p = U
- If $(P-1)U \gg T$, instance infeasible
- Similar number of requests by each participant?
- No meeting restrictions

• **Density** *d*: ratio meetings / accommodation capacity.

$$d = \frac{M}{T \cdot L}$$

• Shape s: ratio accommodation capacity.

$$s = \frac{T}{L}$$

· < E > < E >

Experimental Evaluation

Instances Generation:

- 16 different configurations of density/shape
- 20 random instances per configuration
- 320 different random instances

Encodings:

- No implied constraint (*no-imp*)
- Implied Constraint 1 (imp1)
- Implied Constraint 2 (imp2)
- Both Implied Constraints (*imp12*)

Solving:

- Solved with **Open-WBO**
- Timeout 2h

Varying the Density

PAR10 RUNTIME DEPENDING ON DENSITY

э

э

Varying the Density

PAR10 RUNTIME DEPENDING ON DENSITY

$imp1 \rightsquigarrow$ small density. $imp2 \rightsquigarrow$ high density. Overall, imp12 always beneficial.

Bofill, Garcia, Giráldez-Cru, and Villaret Implied Constraints in MaxSAT B2B Problems

Varying the Shape

PAR10 RUNTIME DEPENDING ON SHAPE

э

Varying the Shape

 $imp1 \rightsquigarrow$ small shape. $imp2 \rightsquigarrow$ high shape. Overall, imp12 always beneficial.

Bofill, Garcia, Giráldez-Cru, and Villaret Implied Constraints in MaxSAT B2B Problems

Checking the Observations in Real-World Instances

- Modify real-world B2B instances.
 - Smaller number of perturbations (in *T* and *L*).

Checking the Observations in Real-World Instances

- Modify real-world B2B instances.
 - Smaller number of perturbations (in T and L).

- **Observation 1**: *imp1* → small density, *imp2* → high density, *imp12* always beneficial.
 - Seems to be valid in real-world instances.
- Observation 2: *imp1* → small shape, *imp2* → high shape, *imp12* always beneficial.
 - Possibly valid in real-world instances. More doubts...

• Open-WBO: MSU3 algorithm (UNSAT-based)

- Internally using **Glucose** (CDCL)
 - Search: guided by the conflicts.

Performance of the MaxSAT Solver (II)

- Random instance with **low density** (general results for all instances analyzed).
- According to Obs. 1, *imp1* is faster than *imp2*, and *imp12* is faster overall.

	Runtime	Decisions
No implied constraints:	70.78	3444288
Implied constraint 1:	5.88	343487
Implied constraint 2:	84.16	3152049
Implied constraints 1 and 2:	3.07	157729

Performance of the MaxSAT Solver (III)

160000

160000

э

(日) (同) (三) (三)

Performance of the MaxSAT Solver (IV)

	de	cisions	on
instance	imp1	imp2	imp12
random low density	3.90%		6.32%

- < 글 > < 글 >

æ

• The use of **both implied constraints reinforces** the decisions on the most *efficient* implied constraint (dependent on the problem), reducing the solving runtime.

	de	on	
instance	imp1	imp2	imp12
random low density	3.90%		6.32%

Performance of the MaxSAT Solver (IV)

• The use of **both implied constraints reinforces** the decisions on the most *efficient* implied constraint (dependent on the problem), reducing the solving runtime.

	decisions on				
instance	imp1	imp2	imp12		
random low density	3.90%		6.32%		
random high density		12.44%	17.86%		

Performance of the MaxSAT Solver (IV)

• The use of **both implied constraints reinforces** the decisions on the most *efficient* implied constraint (dependent on the problem), reducing the solving runtime.

	decisions on				
instance	imp1	imp2	imp12		
random low density	3.90%		6.32%		
random high density		12.44%	17.86%		
forum-14	2.54%		3.55%		
tic-14crafd		4.93%	5.18%		

¬ > < **>** > < **>** > <

Conclusions:

- Random B2B instances generator.
- Strengths and weaknesses of using implied constraints.
- Effectiveness dependent on characteristics of the instance: density and shape.
- Duality in the benefits of using **both**.

Future Work:

- Heuristics to prioritize decisions: *imp1* or *imp2*.
- A more realistic generator: requests, forbidden time slots, ...
- Other implied constraints.

- Can we use this analysis to better understand the efficiency of MaxSAT solvers?
- Can we extract general conclusions on the use of implied constraints to be applied in other problems?

• Redundant information vs Compact encoding

- Faster propagations
- Faster detections of conflicts
- Better pruning

¬ > < **>** > < **>** >

Thank for your attention

Questions?

Bofill, Garcia, Giráldez-Cru, and Villaret Implied Constraints in MaxSAT B2B Problems