
Seeking Practical CDCL Insights
from Theoretical SAT Benchmarks

Jakob Nordström

KTH Royal Institute of Technology
Stockholm, Sweden

7th Pragmatics of SAT Workshop
Bordeaux, France

July 4, 2016

Joint work with Jan Elffers, Karem Sakallah, and Laurent Simon

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 1/25

Introduction The Research Question

The Unreasonable Effectiveness of SAT Solvers

Huge improvements in SAT solving performance over last 15–20 years

Basis of best modern SAT solvers still DPLL method [DP60, DLL62]

Addition of conflict-driven clause learning (CDCL) [MS99]
exponential increase in reasoning power

Plus lots of smart engineering to make it fly in practice [MMZ+01]

And a sometimes somewhat bewildering alphabet soup of heuristics
(VSIDS, 1UIP, LBD, BCD, BCE, BVA, ELS, FLP, VE, VMTF, . . .)

Want a deeper understanding of how these solvers actually work

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 2/25

Introduction The Research Question

The Unreasonable Effectiveness of SAT Solvers

Huge improvements in SAT solving performance over last 15–20 years

Basis of best modern SAT solvers still DPLL method [DP60, DLL62]

Addition of conflict-driven clause learning (CDCL) [MS99]
exponential increase in reasoning power

Plus lots of smart engineering to make it fly in practice [MMZ+01]

And a sometimes somewhat bewildering alphabet soup of heuristics
(VSIDS, 1UIP, LBD, BCD, BCE, BVA, ELS, FLP, VE, VMTF, . . .)

Want a deeper understanding of how these solvers actually work

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 2/25

Introduction The Research Question

The Unreasonable Effectiveness of SAT Solvers

Huge improvements in SAT solving performance over last 15–20 years

Basis of best modern SAT solvers still DPLL method [DP60, DLL62]

Addition of conflict-driven clause learning (CDCL) [MS99]
exponential increase in reasoning power

Plus lots of smart engineering to make it fly in practice [MMZ+01]

And a sometimes somewhat bewildering alphabet soup of heuristics
(VSIDS, 1UIP, LBD, BCD, BCE, BVA, ELS, FLP, VE, VMTF, . . .)

Want a deeper understanding of how these solvers actually work

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 2/25

Introduction The Research Question

The Unreasonable Effectiveness of SAT Solvers

Huge improvements in SAT solving performance over last 15–20 years

Basis of best modern SAT solvers still DPLL method [DP60, DLL62]

Addition of conflict-driven clause learning (CDCL) [MS99]
exponential increase in reasoning power

Plus lots of smart engineering to make it fly in practice [MMZ+01]

And a sometimes somewhat bewildering alphabet soup of heuristics
(VSIDS, 1UIP, LBD, BCD, BCE, BVA, ELS, FLP, VE, VMTF, . . .)

Want a deeper understanding of how these solvers actually work

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 2/25

Introduction The Research Question

The Unreasonable Effectiveness of SAT Solvers

Huge improvements in SAT solving performance over last 15–20 years

Basis of best modern SAT solvers still DPLL method [DP60, DLL62]

Addition of conflict-driven clause learning (CDCL) [MS99]
exponential increase in reasoning power

Plus lots of smart engineering to make it fly in practice [MMZ+01]

And a sometimes somewhat bewildering alphabet soup of heuristics
(VSIDS, 1UIP, LBD, BCD, BCE, BVA, ELS, FLP, VE, VMTF, . . .)

Want a deeper understanding of how these solvers actually work

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 2/25

Introduction The Research Question

The Unreasonable Effectiveness of SAT Solvers

Huge improvements in SAT solving performance over last 15–20 years

Basis of best modern SAT solvers still DPLL method [DP60, DLL62]

Addition of conflict-driven clause learning (CDCL) [MS99]
exponential increase in reasoning power

Plus lots of smart engineering to make it fly in practice [MMZ+01]

And a sometimes somewhat bewildering alphabet soup of heuristics
(VSIDS, 1UIP, LBD, BCD, BCE, BVA, ELS, FLP, VE, VMTF, . . .)

Want a deeper understanding of how these solvers actually work

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 2/25

Introduction Our Approach

Analysing Behaviour of CDCL Solvers
Can we explain when CDCL does well and when formulas are hard?
Run experiments and draw interesting conclusions?

Theory approach: CDCL hardness related to complexity measures?
Some work in [JMNŽ12], but generated more questions than answers
Applied approach: Vary CDCL settings on industrial benchmarks
Some work in [KSM11, SM11], but diversity and sparsity of industrial
benchmarks makes it hard to draw clear conclusions

Why not combine the two approaches?

Generate scalable & easy versions of theoretical benchmarks
Have short resolution proofs, so no excuse for solver not doing well. . .
Run CDCL with different heuristics to see how performance affected
Benchmarks extremal w.r.t. different properties — can be expected to
“challenge” solver

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 3/25

Introduction Our Approach

Analysing Behaviour of CDCL Solvers
Can we explain when CDCL does well and when formulas are hard?
Run experiments and draw interesting conclusions?

Theory approach: CDCL hardness related to complexity measures?
Some work in [JMNŽ12], but generated more questions than answers
Applied approach: Vary CDCL settings on industrial benchmarks
Some work in [KSM11, SM11], but diversity and sparsity of industrial
benchmarks makes it hard to draw clear conclusions

Why not combine the two approaches?

Generate scalable & easy versions of theoretical benchmarks
Have short resolution proofs, so no excuse for solver not doing well. . .
Run CDCL with different heuristics to see how performance affected
Benchmarks extremal w.r.t. different properties — can be expected to
“challenge” solver

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 3/25

Introduction Our Approach

Analysing Behaviour of CDCL Solvers
Can we explain when CDCL does well and when formulas are hard?
Run experiments and draw interesting conclusions?

Theory approach: CDCL hardness related to complexity measures?
Some work in [JMNŽ12], but generated more questions than answers
Applied approach: Vary CDCL settings on industrial benchmarks
Some work in [KSM11, SM11], but diversity and sparsity of industrial
benchmarks makes it hard to draw clear conclusions

Why not combine the two approaches?

Generate scalable & easy versions of theoretical benchmarks
Have short resolution proofs, so no excuse for solver not doing well. . .
Run CDCL with different heuristics to see how performance affected
Benchmarks extremal w.r.t. different properties — can be expected to
“challenge” solver

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 3/25

Introduction Our Approach

Analysing Behaviour of CDCL Solvers
Can we explain when CDCL does well and when formulas are hard?
Run experiments and draw interesting conclusions?

Theory approach: CDCL hardness related to complexity measures?
Some work in [JMNŽ12], but generated more questions than answers
Applied approach: Vary CDCL settings on industrial benchmarks
Some work in [KSM11, SM11], but diversity and sparsity of industrial
benchmarks makes it hard to draw clear conclusions

Why not combine the two approaches?

Generate scalable & easy versions of theoretical benchmarks
Have short resolution proofs, so no excuse for solver not doing well. . .
Run CDCL with different heuristics to see how performance affected
Benchmarks extremal w.r.t. different properties — can be expected to
“challenge” solver

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 3/25

Introduction Our Approach

Analysing Behaviour of CDCL Solvers
Can we explain when CDCL does well and when formulas are hard?
Run experiments and draw interesting conclusions?

Theory approach: CDCL hardness related to complexity measures?
Some work in [JMNŽ12], but generated more questions than answers
Applied approach: Vary CDCL settings on industrial benchmarks
Some work in [KSM11, SM11], but diversity and sparsity of industrial
benchmarks makes it hard to draw clear conclusions

Why not combine the two approaches?

Generate scalable & easy versions of theoretical benchmarks
Have short resolution proofs, so no excuse for solver not doing well. . .
Run CDCL with different heuristics to see how performance affected
Benchmarks extremal w.r.t. different properties — can be expected to
“challenge” solver

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 3/25

Introduction Our Approach

Analysing Behaviour of CDCL Solvers
Can we explain when CDCL does well and when formulas are hard?
Run experiments and draw interesting conclusions?

Theory approach: CDCL hardness related to complexity measures?
Some work in [JMNŽ12], but generated more questions than answers
Applied approach: Vary CDCL settings on industrial benchmarks
Some work in [KSM11, SM11], but diversity and sparsity of industrial
benchmarks makes it hard to draw clear conclusions

Why not combine the two approaches?

Generate scalable & easy versions of theoretical benchmarks
Have short resolution proofs, so no excuse for solver not doing well. . .
Run CDCL with different heuristics to see how performance affected
Benchmarks extremal w.r.t. different properties — can be expected to
“challenge” solver

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 3/25

Introduction Our Approach

Analysing Behaviour of CDCL Solvers
Can we explain when CDCL does well and when formulas are hard?
Run experiments and draw interesting conclusions?

Theory approach: CDCL hardness related to complexity measures?
Some work in [JMNŽ12], but generated more questions than answers
Applied approach: Vary CDCL settings on industrial benchmarks
Some work in [KSM11, SM11], but diversity and sparsity of industrial
benchmarks makes it hard to draw clear conclusions

Why not combine the two approaches?

Generate scalable & easy versions of theoretical benchmarks
Have short resolution proofs, so no excuse for solver not doing well. . .
Run CDCL with different heuristics to see how performance affected
Benchmarks extremal w.r.t. different properties — can be expected to
“challenge” solver

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 3/25

Introduction Our Approach

This Talk

Describe candidate set of benchmarks

Discuss CDCL parameter configurations to be tested
(focus on basic CDCL search, not preprocessing techniques)

Report on some preliminary findings
Warning for sensitive viewers: will be plots, but no cactus plots

Caveat: Still very much work in progress
Hope that presentation can generate interesting discussions

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 4/25

Theory Background Resolution Proof System

Some Notation and Terminology

Literal a: variable x or its negation x (or ¬x)

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

k-CNF formula: CNF formula with clauses of size ≤ k
(where k is some constant)

N denotes size of formula (# literals counted with repetitions)

O(f(N)) grows at most as quickly as f(N) asymptotically
Ω(g(N)) grows at least as quickly as g(N) asymptotically
Θ(h(N)) grows equally quickly as h(N) asymptotically

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 5/25

Theory Background Resolution Proof System

Proof System Underlying CDCL: Resolution

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree (corresponds to DPLL)
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 6/25

Theory Background Resolution Proof System

Proof System Underlying CDCL: Resolution

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree (corresponds to DPLL)
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 6/25

Theory Background Resolution Proof System

Proof System Underlying CDCL: Resolution

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree (corresponds to DPLL)
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 6/25

Theory Background Resolution Proof System

Proof System Underlying CDCL: Resolution

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree (corresponds to DPLL)
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 6/25

Theory Background Resolution Proof System

Proof System Underlying CDCL: Resolution

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree (corresponds to DPLL)
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 6/25

Theory Background Resolution Proof System

Proof System Underlying CDCL: Resolution

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree (corresponds to DPLL)
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 6/25

Theory Background Resolution Proof System

Resolution Size/Length

Size/length of proof = # clauses (9 in example on previous slide)
Length of refuting F = min over all proofs for F

Most fundamental measure in proof complexity

Lower bound on CDCL running time∗

(can extract resolution proof from execution trace)

Never worse than exp(O(N))

Matching exp(Ω(N)) lower bounds known [Urq87, CS88, BW01]

(*) Ignores preprocessing — focus here on CDCL proof search

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 7/25

Theory Background Resolution Proof System

Resolution Size/Length

Size/length of proof = # clauses (9 in example on previous slide)
Length of refuting F = min over all proofs for F

Most fundamental measure in proof complexity

Lower bound on CDCL running time∗

(can extract resolution proof from execution trace)

Never worse than exp(O(N))

Matching exp(Ω(N)) lower bounds known [Urq87, CS88, BW01]

(*) Ignores preprocessing — focus here on CDCL proof search

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 7/25

Theory Background Resolution Proof System

Resolution Size/Length

Size/length of proof = # clauses (9 in example on previous slide)
Length of refuting F = min over all proofs for F

Most fundamental measure in proof complexity

Lower bound on CDCL running time∗

(can extract resolution proof from execution trace)

Never worse than exp(O(N))

Matching exp(Ω(N)) lower bounds known [Urq87, CS88, BW01]

(*) Ignores preprocessing — focus here on CDCL proof search

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 7/25

Theory Background Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 8/25

Theory Background Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

7. x Res(1, 6)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 8/25

Theory Background Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

x

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 8/25

Theory Background Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 is 5

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

xx

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 8/25

Theory Background Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 is 5

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

xx

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 8/25

Theory Background Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 is 5

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

xx

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 8/25

Theory Background Resolution Proof System

Bounds on Resolution Space

Space always at most N +O(1) (!) [ET01]

Matching Ω(N) lower bounds known [ABRW02, BG03, ET01]

Linear space lower bounds might not seem so impressive. . .

But:
Hold even for optimal algorithms that magically know exactly which
clauses to throw away or keep
So significantly more space might be needed in practice
And linear space upper bound obtained for proofs of exponential size

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 9/25

Theory Background Resolution Proof System

Bounds on Resolution Space

Space always at most N +O(1) (!) [ET01]

Matching Ω(N) lower bounds known [ABRW02, BG03, ET01]

Linear space lower bounds might not seem so impressive. . .

But:
Hold even for optimal algorithms that magically know exactly which
clauses to throw away or keep
So significantly more space might be needed in practice
And linear space upper bound obtained for proofs of exponential size

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 9/25

Theory Background Resolution Proof System

Bounds on Resolution Space

Space always at most N +O(1) (!) [ET01]

Matching Ω(N) lower bounds known [ABRW02, BG03, ET01]

Linear space lower bounds might not seem so impressive. . .

But:
Hold even for optimal algorithms that magically know exactly which
clauses to throw away or keep
So significantly more space might be needed in practice
And linear space upper bound obtained for proofs of exponential size

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 9/25

Theory Background Resolution Proof System

Resolution Width

Width of proof = size of largest clause in proof (always ≤ N)
Width of refuting F = width of shortest proof for F

Width upper bounds ⇒ length upper bounds (obvious)

Width lower bounds ⇒ space lower bounds [AD08]

Really strong width lower bounds ⇒ length lower bounds [BW01]

But only moderately strong width lower bounds don’t imply anything for
length [BG01] (except hardness for tree-like resolution / DPLL)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 10/25

Theory Background Resolution Proof System

Resolution Width

Width of proof = size of largest clause in proof (always ≤ N)
Width of refuting F = width of shortest proof for F

Width upper bounds ⇒ length upper bounds (obvious)

Width lower bounds ⇒ space lower bounds [AD08]

Really strong width lower bounds ⇒ length lower bounds [BW01]

But only moderately strong width lower bounds don’t imply anything for
length [BG01] (except hardness for tree-like resolution / DPLL)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 10/25

Theory Background Resolution Proof System

Resolution Width

Width of proof = size of largest clause in proof (always ≤ N)
Width of refuting F = width of shortest proof for F

Width upper bounds ⇒ length upper bounds (obvious)

Width lower bounds ⇒ space lower bounds [AD08]

Really strong width lower bounds ⇒ length lower bounds [BW01]

But only moderately strong width lower bounds don’t imply anything for
length [BG01] (except hardness for tree-like resolution / DPLL)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 10/25

Theory Background Resolution Proof System

Resolution Width

Width of proof = size of largest clause in proof (always ≤ N)
Width of refuting F = width of shortest proof for F

Width upper bounds ⇒ length upper bounds (obvious)

Width lower bounds ⇒ space lower bounds [AD08]

Really strong width lower bounds ⇒ length lower bounds [BW01]

But only moderately strong width lower bounds don’t imply anything for
length [BG01] (except hardness for tree-like resolution / DPLL)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 10/25

Theory Background Resolution Proof System

Resolution Width

Width of proof = size of largest clause in proof (always ≤ N)
Width of refuting F = width of shortest proof for F

Width upper bounds ⇒ length upper bounds (obvious)

Width lower bounds ⇒ space lower bounds [AD08]

Really strong width lower bounds ⇒ length lower bounds [BW01]

But only moderately strong width lower bounds don’t imply anything for
length [BG01] (except hardness for tree-like resolution / DPLL)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 10/25

Theory Background Benchmark Formulas

Collection of Combinatorial Benchmarks

1 Tseitin formulas [Tse68, Urq87]

2 Ordering principle formulas [Kri85, St̊a96]

3 Pebbling formulas [BW01, BN08]

4 Stone formulas [AJPU07]

5 Zero-one designs / subset cardinality formulas [Spe10, VS10, MN14]

6 Even colouring formulas [Mar06]

7 Relativized pigeonhole principle (RPHP) formulas [AMO13, ALN16]

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 11/25

Theory Background Benchmark Formulas

Some General Comments on Benchmarks

Tweak instances so that all have short resolution proofs (even linear
size for all except relativized RPHP)

I proofs can in principle be found by CDCL
I without any preprocessing
I often even without any restarts
I sometimes even without learning, i.e., just DPLL (though might incur

some blow-up)
I . . . given right variable decision order

Test theoretical results in [AFT11, PD11]: Does CDCL search for
proofs efficiently?

Several benchmarks extremal w.r.t. proof complexity measures or
trade-offs between measures (see workshop paper for details)

Practical note: many (though not all) instances generated using
CNFgen [CNF, LENV16]

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 12/25

Theory Background Benchmark Formulas

Tseitin Formulas

Take w ×m grid, w � m

Label vertices 0/1 so that total charge odd
Let variables = edges
Write down clauses encoding constraints
“vertex label = parity of incident edges”
Hard for well-connected graphs [Urq87] but easy
on grids with w = O(1) (even for DPLL)

a

b

c

d

e

f

g

(a ∨ d)

∧ (a ∨ d)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)

∧ (b ∨ c ∨ f)
∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)
∧ (c ∨ g)
∧ (c ∨ g)
...

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 13/25

Theory Background Benchmark Formulas

Tseitin Formulas

Take w ×m grid, w � m

Label vertices 0/1 so that total charge odd
Let variables = edges
Write down clauses encoding constraints
“vertex label = parity of incident edges”
Hard for well-connected graphs [Urq87] but easy
on grids with w = O(1) (even for DPLL)

a

b

c

d

e

f

g

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(a ∨ d)

∧ (a ∨ d)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)

∧ (b ∨ c ∨ f)
∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)
∧ (c ∨ g)
∧ (c ∨ g)
...

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 13/25

Theory Background Benchmark Formulas

Tseitin Formulas

Take w ×m grid, w � m

Label vertices 0/1 so that total charge odd
Let variables = edges
Write down clauses encoding constraints
“vertex label = parity of incident edges”
Hard for well-connected graphs [Urq87] but easy
on grids with w = O(1) (even for DPLL)

a

b

c

d

e

f

g

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(a ∨ d)

∧ (a ∨ d)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)

∧ (b ∨ c ∨ f)
∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)
∧ (c ∨ g)
∧ (c ∨ g)
...

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 13/25

Theory Background Benchmark Formulas

Tseitin Formulas

Take w ×m grid, w � m

Label vertices 0/1 so that total charge odd
Let variables = edges
Write down clauses encoding constraints
“vertex label = parity of incident edges”
Hard for well-connected graphs [Urq87] but easy
on grids with w = O(1) (even for DPLL)

a

b

c

d

e

f

g

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(a ∨ d)

∧ (a ∨ d)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)

∧ (b ∨ c ∨ f)
∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)
∧ (c ∨ g)
∧ (c ∨ g)
...

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 13/25

Theory Background Benchmark Formulas

Tseitin Formulas

Take w ×m grid, w � m

Label vertices 0/1 so that total charge odd
Let variables = edges
Write down clauses encoding constraints
“vertex label = parity of incident edges”
Hard for well-connected graphs [Urq87] but easy
on grids with w = O(1) (even for DPLL)

a

b

c

d

e

f

g

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(a ∨ d)

∧ (a ∨ d)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)

∧ (b ∨ c ∨ f)
∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)
∧ (c ∨ g)
∧ (c ∨ g)
...

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 13/25

Theory Background Benchmark Formulas

Tseitin Formulas

Take w ×m grid, w � m

Label vertices 0/1 so that total charge odd
Let variables = edges
Write down clauses encoding constraints
“vertex label = parity of incident edges”
Hard for well-connected graphs [Urq87] but easy
on grids with w = O(1) (even for DPLL)

a

b

c

d

e

f

g

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(a ∨ d)

∧ (a ∨ d)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)

∧ (b ∨ c ∨ f)
∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)
∧ (c ∨ g)
∧ (c ∨ g)
...

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 13/25

Theory Background Benchmark Formulas

Tseitin Formulas

Take w ×m grid, w � m

Label vertices 0/1 so that total charge odd
Let variables = edges
Write down clauses encoding constraints
“vertex label = parity of incident edges”
Hard for well-connected graphs [Urq87] but easy
on grids with w = O(1) (even for DPLL)

a

b

c

d

e

f

g

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(a ∨ d)

∧ (a ∨ d)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)

∧ (b ∨ c ∨ f)
∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)
∧ (c ∨ g)
∧ (c ∨ g)
...

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 13/25

Theory Background Benchmark Formulas

Tseitin Formulas

Take w ×m grid, w � m

Label vertices 0/1 so that total charge odd
Let variables = edges
Write down clauses encoding constraints
“vertex label = parity of incident edges”
Hard for well-connected graphs [Urq87] but easy
on grids with w = O(1) (even for DPLL)

a

b

c

d

e

f

g

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(a ∨ d)

∧ (a ∨ d)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)

∧ (b ∨ c ∨ f)
∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)
∧ (c ∨ g)
∧ (c ∨ g)
...

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 13/25

Theory Background Benchmark Formulas

Tseitin Formulas

Take w ×m grid, w � m

Label vertices 0/1 so that total charge odd
Let variables = edges
Write down clauses encoding constraints
“vertex label = parity of incident edges”
Hard for well-connected graphs [Urq87] but easy
on grids with w = O(1) (even for DPLL)

a

b

c

d

e

f

g

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(a ∨ d)

∧ (a ∨ d)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)
∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)

∧ (b ∨ c ∨ f)
∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)
∧ (c ∨ g)
∧ (c ∨ g)
...

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 13/25

Theory Background Benchmark Formulas

Subset Cardinality Formulas / Zero-One Designs
Proposed by [Spe10, VS10]
Variables = 1s in matrix with four 1s per row/column + extra 1
Each row wants majority true; each column wants majority false

1 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 0 1



(x1,1 ∨ x1,2 ∨ x1,4)
∧ (x1,1 ∨ x1,2 ∨ x1,8)
∧ (x1,1 ∨ x1,4 ∨ x1,8)
∧ (x1,2 ∨ x1,4 ∨ x1,8)

...
∧ (x4,11 ∨ x8,11 ∨ x10,11)
∧ (x4,11 ∨ x8,11 ∨ x11,11)
∧ (x4,11 ∨ x10,11 ∨ x11,11)
∧ (x8,11 ∨ x10,11 ∨ x11,11)

Hard for expanding (well spread-out) matrices [MN14]
but easy for regular patterns like the one above (even for DPLL)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 14/25

Theory Background Benchmark Formulas

Subset Cardinality Formulas / Zero-One Designs
Proposed by [Spe10, VS10]
Variables = 1s in matrix with four 1s per row/column + extra 1
Each row wants majority true; each column wants majority false

1 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 0 1



(x1,1 ∨ x1,2 ∨ x1,4)
∧ (x1,1 ∨ x1,2 ∨ x1,8)
∧ (x1,1 ∨ x1,4 ∨ x1,8)
∧ (x1,2 ∨ x1,4 ∨ x1,8)

...
∧ (x4,11 ∨ x8,11 ∨ x10,11)
∧ (x4,11 ∨ x8,11 ∨ x11,11)
∧ (x4,11 ∨ x10,11 ∨ x11,11)
∧ (x8,11 ∨ x10,11 ∨ x11,11)

Hard for expanding (well spread-out) matrices [MN14]
but easy for regular patterns like the one above (even for DPLL)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 14/25

Theory Background Benchmark Formulas

Subset Cardinality Formulas / Zero-One Designs
Proposed by [Spe10, VS10]
Variables = 1s in matrix with four 1s per row/column + extra 1
Each row wants majority true; each column wants majority false

1 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 0 1



(x1,1 ∨ x1,2 ∨ x1,4)
∧ (x1,1 ∨ x1,2 ∨ x1,8)
∧ (x1,1 ∨ x1,4 ∨ x1,8)
∧ (x1,2 ∨ x1,4 ∨ x1,8)

...
∧ (x4,11 ∨ x8,11 ∨ x10,11)
∧ (x4,11 ∨ x8,11 ∨ x11,11)
∧ (x4,11 ∨ x10,11 ∨ x11,11)
∧ (x8,11 ∨ x10,11 ∨ x11,11)

Hard for expanding (well spread-out) matrices [MN14]
but easy for regular patterns like the one above (even for DPLL)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 14/25

Theory Background Benchmark Formulas

Subset Cardinality Formulas / Zero-One Designs
Proposed by [Spe10, VS10]
Variables = 1s in matrix with four 1s per row/column + extra 1
Each row wants majority true; each column wants majority false

1 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 0 1



(x1,1 ∨ x1,2 ∨ x1,4)
∧ (x1,1 ∨ x1,2 ∨ x1,8)
∧ (x1,1 ∨ x1,4 ∨ x1,8)
∧ (x1,2 ∨ x1,4 ∨ x1,8)

...
∧ (x4,11 ∨ x8,11 ∨ x10,11)
∧ (x4,11 ∨ x8,11 ∨ x11,11)
∧ (x4,11 ∨ x10,11 ∨ x11,11)
∧ (x8,11 ∨ x10,11 ∨ x11,11)

Hard for expanding (well spread-out) matrices [MN14]
but easy for regular patterns like the one above (even for DPLL)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 14/25

Theory Background Benchmark Formulas

Subset Cardinality Formulas / Zero-One Designs
Proposed by [Spe10, VS10]
Variables = 1s in matrix with four 1s per row/column + extra 1
Each row wants majority true; each column wants majority false

1 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 0 1



(x1,1 ∨ x1,2 ∨ x1,4)
∧ (x1,1 ∨ x1,2 ∨ x1,8)
∧ (x1,1 ∨ x1,4 ∨ x1,8)
∧ (x1,2 ∨ x1,4 ∨ x1,8)

...
∧ (x4,11 ∨ x8,11 ∨ x10,11)
∧ (x4,11 ∨ x8,11 ∨ x11,11)
∧ (x4,11 ∨ x10,11 ∨ x11,11)
∧ (x8,11 ∨ x10,11 ∨ x11,11)

Hard for expanding (well spread-out) matrices [MN14]
but easy for regular patterns like the one above (even for DPLL)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 14/25

Theory Background Benchmark Formulas

Ordering Principle Formulas

“Every finite ordered set {e1, . . . , en} has minimal element”

Variables xi,j = “ei < ej”

xi,j ∨ xj,i anti-symmetry; not both ei < ej and ej < ei

xi,j ∨ xj,k ∨ xi,k transitivity; ei < ej and ej < ek implies ei < ek∨
1≤i≤n, i6=j

xi,j ej is not a minimal element

Can also add “total order” axioms

xi,j ∨ xj,i totality; either ei < ej or ej < ei

Conjectured hard [Kri85] but refutable in length O(N) [St̊a96]
Requires resolution width Ω

(3√N
)

converted to k-CNF [BG01]
(Or use asymmetric width measure in [Kul99])

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 15/25

Theory Background Benchmark Formulas

Ordering Principle Formulas

“Every finite ordered set {e1, . . . , en} has minimal element”

Variables xi,j = “ei < ej”

xi,j ∨ xj,i anti-symmetry; not both ei < ej and ej < ei

xi,j ∨ xj,k ∨ xi,k transitivity; ei < ej and ej < ek implies ei < ek∨
1≤i≤n, i6=j

xi,j ej is not a minimal element

Can also add “total order” axioms

xi,j ∨ xj,i totality; either ei < ej or ej < ei

Conjectured hard [Kri85] but refutable in length O(N) [St̊a96]
Requires resolution width Ω

(3√N
)

converted to k-CNF [BG01]
(Or use asymmetric width measure in [Kul99])

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 15/25

Theory Background Benchmark Formulas

Pebbling Formulas
Encode so-called pebble games on DAGs [BW01]

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Write in CNF; e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) becomes

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Works for other functions than ⊕ (we use NEQ3, but harder to illustrate)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 16/25

Theory Background Benchmark Formulas

Pebbling Formulas
Encode so-called pebble games on DAGs [BW01]

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Write in CNF; e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) becomes

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Works for other functions than ⊕ (we use NEQ3, but harder to illustrate)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 16/25

Theory Background Benchmark Formulas

Pebbling Formulas
Encode so-called pebble games on DAGs [BW01]

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Write in CNF; e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) becomes

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Works for other functions than ⊕ (we use NEQ3, but harder to illustrate)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 16/25

Theory Background Benchmark Formulas

Pebbling Formulas
Encode so-called pebble games on DAGs [BW01]

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Write in CNF; e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) becomes

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Works for other functions than ⊕ (we use NEQ3, but harder to illustrate)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 16/25

Theory Background Benchmark Formulas

Pebbling Formulas
Encode so-called pebble games on DAGs [BW01]

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Write in CNF; e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) becomes

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Works for other functions than ⊕ (we use NEQ3, but harder to illustrate)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 16/25

Theory Background Benchmark Formulas

Pebbling Formulas
Encode so-called pebble games on DAGs [BW01]

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Write in CNF; e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) becomes

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Works for other functions than ⊕ (we use NEQ3, but harder to illustrate)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 16/25

Theory Background Benchmark Formulas

Pebbling Formulas
Encode so-called pebble games on DAGs [BW01]

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Write in CNF; e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) becomes

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Works for other functions than ⊕ (we use NEQ3, but harder to illustrate)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 16/25

Theory Background Benchmark Formulas

Pebbling Formulas
Encode so-called pebble games on DAGs [BW01]

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Write in CNF; e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) becomes

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Works for other functions than ⊕ (we use NEQ3, but harder to illustrate)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 16/25

Theory Background Benchmark Formulas

Pebbling Formulas
Encode so-called pebble games on DAGs [BW01]

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Write in CNF; e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) becomes

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Works for other functions than ⊕ (we use NEQ3, but harder to illustrate)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 16/25

Empirical Evaluation Experiment Set-up

Instrumented CDCL Solver

To run experiments, add “knobs” to Glucose [AS09, Glu] to analyse:
restart policy
branching
clause database management
clause learning

Though strictly speaking not part of basic CDCL, we also study effects of:
preprocessing (Glucose standard on/off; so far always on)
random shuffling of instances (but doesn’t seem to matter)

Yields huge number of potential combinations
Not all combinations make sense, but many do
Test also settings where “convential wisdom” knows answer
Several settings still remain to test — marked with ∗ in what follows

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 17/25

Empirical Evaluation Experiment Set-up

Instrumented CDCL Solver

To run experiments, add “knobs” to Glucose [AS09, Glu] to analyse:
restart policy
branching
clause database management
clause learning

Though strictly speaking not part of basic CDCL, we also study effects of:
preprocessing (Glucose standard on/off; so far always on)
random shuffling of instances (but doesn’t seem to matter)

Yields huge number of potential combinations
Not all combinations make sense, but many do
Test also settings where “convential wisdom” knows answer
Several settings still remain to test — marked with ∗ in what follows

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 17/25

Empirical Evaluation Experiment Set-up

Instrumented CDCL Solver

To run experiments, add “knobs” to Glucose [AS09, Glu] to analyse:
restart policy
branching
clause database management
clause learning

Though strictly speaking not part of basic CDCL, we also study effects of:
preprocessing (Glucose standard on/off; so far always on)
random shuffling of instances (but doesn’t seem to matter)

Yields huge number of potential combinations
Not all combinations make sense, but many do
Test also settings where “convential wisdom” knows answer
Several settings still remain to test — marked with ∗ in what follows

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 17/25

Empirical Evaluation Experiment Set-up

CDCL Parameters (1/2)

Restart policy
No restarts
LBD-style restarts (Glucose)
Luby restarts (with different multiplicative factors)∗

Variable selection
Fixed order (chosen to be good)
VSIDS (with decay factors 0.99∗, 0.95, 0.80, 0.65∗)

Phase saving
Random phase
Phase fixed to all false at start of execution∗

Phase fixed randomly at start of execution∗

Standard phase saving
Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 18/25

Empirical Evaluation Experiment Set-up

CDCL Parameters (2/2)

Clause erasure
No clause deletion (keep all learned clauses)
“Classic” MiniSat-style removal (Θ(n) clauses after n conflicts)∗

Glucose-style removal (Θ
(√

n
)

clauses after n conflicts)
New, more aggressive MiniSat (O

(
n0.24) clauses after n conflicts)

Clause assessment
Keep clauses with a good (high) VSIDS score à la MiniSat
Keep clauses with a good (low) LBD score à la Glucose

Clause learning
DPLL-style search with minimal amount of clause learning∗

Standard 1UIP clause learning

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 19/25

Empirical Evaluation Some Tentative Findings

Some Preliminary Conclusions (1/2)

Importance of restarts
Sometimes very frequent restarts very important
Crucial in [AFT11, PD11] for CDCL to simulate resolution efficiently
Also seems to matter in practice for some formulas which are hard for
subsystems of resolution such as regular resolution (stone formulas)

Clause erasure
Theory says very aggressive clause removal could hurt badly
Seem to see this on scaled-down versions of time-space trade-off
formulas in [BBI12, BNT13] (Tseitin formulas)
Even no erasure at all can be competitive for these formulas for
frequent enough restarts

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 20/25

Empirical Evaluation Some Tentative Findings

Some Preliminary Conclusions (1/2)

Importance of restarts
Sometimes very frequent restarts very important
Crucial in [AFT11, PD11] for CDCL to simulate resolution efficiently
Also seems to matter in practice for some formulas which are hard for
subsystems of resolution such as regular resolution (stone formulas)

Clause erasure
Theory says very aggressive clause removal could hurt badly
Seem to see this on scaled-down versions of time-space trade-off
formulas in [BBI12, BNT13] (Tseitin formulas)
Even no erasure at all can be competitive for these formulas for
frequent enough restarts

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 20/25

Empirical Evaluation Some Tentative Findings

Plot 1: Tseitin Formulas on Grids

0 20 40 60 80 100
N

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
 (

s)

Tseitin grid (5xN): different restart and clause erasure strategies

Minisat 2.2 reduce freq, no restarts

Minisat 2.2 reduce freq, LBD restarts

LBD reduce freq, no restarts

LBD reduce freq, LBD restarts

No deletion, no restarts

No deletion, LBD restarts

Fixed var. order, no deletion

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 21/25

Empirical Evaluation Some Tentative Findings

Some Preliminary Conclusions (2/2)
Clause assessment

Can LBD (literal block distance) heuristic compensate for aggressive
erasures by identifying important clauses to keep? Maybe. . .
But LBD can backfire for too aggressive removal — old glue clauses
clog up the clause database(?)

Variable branching
Phase saving only helps together with frequent restarts
Sometimes small variations in VSIDS decay factor (rate of forgetting)
absolutely crucial (ordering principle)
Does slow decay bring solver closer to tree-like resolution???

CDCL vs. resolution
Sometimes CDCL fails miserably on easy formulas (Tseitin,
even colouring) — VSIDS just goes dead wrong
Sometimes strange easy-hard-easy patterns (zero-one designs)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 22/25

Empirical Evaluation Some Tentative Findings

Some Preliminary Conclusions (2/2)
Clause assessment

Can LBD (literal block distance) heuristic compensate for aggressive
erasures by identifying important clauses to keep? Maybe. . .
But LBD can backfire for too aggressive removal — old glue clauses
clog up the clause database(?)

Variable branching
Phase saving only helps together with frequent restarts
Sometimes small variations in VSIDS decay factor (rate of forgetting)
absolutely crucial (ordering principle)
Does slow decay bring solver closer to tree-like resolution???

CDCL vs. resolution
Sometimes CDCL fails miserably on easy formulas (Tseitin,
even colouring) — VSIDS just goes dead wrong
Sometimes strange easy-hard-easy patterns (zero-one designs)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 22/25

Empirical Evaluation Some Tentative Findings

Some Preliminary Conclusions (2/2)
Clause assessment

Can LBD (literal block distance) heuristic compensate for aggressive
erasures by identifying important clauses to keep? Maybe. . .
But LBD can backfire for too aggressive removal — old glue clauses
clog up the clause database(?)

Variable branching
Phase saving only helps together with frequent restarts
Sometimes small variations in VSIDS decay factor (rate of forgetting)
absolutely crucial (ordering principle)
Does slow decay bring solver closer to tree-like resolution???

CDCL vs. resolution
Sometimes CDCL fails miserably on easy formulas (Tseitin,
even colouring) — VSIDS just goes dead wrong
Sometimes strange easy-hard-easy patterns (zero-one designs)

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 22/25

Empirical Evaluation Some Tentative Findings

Plot 2: Ordering Principle Formulas

0 20 40 60 80 100
N

0

1000

2000

3000

4000

5000

6000

T
im

e
 (

s)

POP: different VSIDS decay factor and restart strategies

VSIDS 0.95, No restarts

VSIDS 0.95, LBD restarts

VSIDS 0.80, No restarts

VSIDS 0.80, LBD restarts

Fixed var. order

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 23/25

Empirical Evaluation Some Tentative Findings

Plot 3: Zero-One Designs

10 15 20 25 30 35 40 45 50
N

0

1000

2000

3000

4000

5000

6000

T
im

e
 (

s)

Subset card: different clause erasure and restart strategies

LBD assessment, Minisat 2.2 reduce freq, no restarts

LBD assessment, Minisat 2.2 reduce freq, LBD restarts

LBD assessment, LBD reduce freq, no restarts

LBD assessment, LBD reduce freq, LBD restarts

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 24/25

Concluding Remarks

Report on a work still very much in progress

Hoping to stimulate discussion and generate feed-back
(already happened with PoS reviews)

Main novelty: experiments on scalable & easy theoretical benchmarks

Main purpose not to solve more SAT competion benchmarks, but to
gain better understanding of CDCL

Presented only some preliminary findings — we are optimistic that
further interesting conclusions will follow

Thank you for your attention!

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 25/25

Concluding Remarks

Report on a work still very much in progress

Hoping to stimulate discussion and generate feed-back
(already happened with PoS reviews)

Main novelty: experiments on scalable & easy theoretical benchmarks

Main purpose not to solve more SAT competion benchmarks, but to
gain better understanding of CDCL

Presented only some preliminary findings — we are optimistic that
further interesting conclusions will follow

Thank you for your attention!

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 25/25

Concluding Remarks

Report on a work still very much in progress

Hoping to stimulate discussion and generate feed-back
(already happened with PoS reviews)

Main novelty: experiments on scalable & easy theoretical benchmarks

Main purpose not to solve more SAT competion benchmarks, but to
gain better understanding of CDCL

Presented only some preliminary findings — we are optimistic that
further interesting conclusions will follow

Thank you for your attention!

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 25/25

Concluding Remarks

Report on a work still very much in progress

Hoping to stimulate discussion and generate feed-back
(already happened with PoS reviews)

Main novelty: experiments on scalable & easy theoretical benchmarks

Main purpose not to solve more SAT competion benchmarks, but to
gain better understanding of CDCL

Presented only some preliminary findings — we are optimistic that
further interesting conclusions will follow

Thank you for your attention!

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 25/25

Concluding Remarks

Report on a work still very much in progress

Hoping to stimulate discussion and generate feed-back
(already happened with PoS reviews)

Main novelty: experiments on scalable & easy theoretical benchmarks

Main purpose not to solve more SAT competion benchmarks, but to
gain better understanding of CDCL

Presented only some preliminary findings — we are optimistic that
further interesting conclusions will follow

Thank you for your attention!

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 25/25

Concluding Remarks

Report on a work still very much in progress

Hoping to stimulate discussion and generate feed-back
(already happened with PoS reviews)

Main novelty: experiments on scalable & easy theoretical benchmarks

Main purpose not to solve more SAT competion benchmarks, but to
gain better understanding of CDCL

Presented only some preliminary findings — we are optimistic that
further interesting conclusions will follow

Thank you for your attention!

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 25/25

References I

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson.
Space complexity in propositional calculus. SIAM Journal on Computing,
31(4):1184–1211, 2002. Preliminary version in STOC ’00.

[AD08] Albert Atserias and V́ıctor Dalmau. A combinatorial characterization of resolution
width. Journal of Computer and System Sciences, 74(3):323–334, May 2008.
Preliminary version in CCC ’03.

[AFT11] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning
algorithms with many restarts and bounded-width resolution. Journal of Artificial
Intelligence Research, 40:353–373, January 2011. Preliminary version in SAT ’09.

[AJPU07] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An
exponential separation between regular and general resolution. Theory of
Computing, 3(5):81–102, May 2007. Preliminary version in STOC ’02.

[ALN16] Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow proofs may be
maximally long. ACM Transactions on Computational Logic, 17:19:1–19:30, May
2016. Preliminary version in CCC ’14.

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 26/25

References II

[AMO13] Albert Atserias, Moritz Müller, and Sergi Oliva. Lower bounds for DNF-refutations
of a relativized weak pigeonhole principle. In Proceedings of the 28th Annual IEEE
Conference on Computational Complexity (CCC ’13), pages 109–120, June 2013.

[AS09] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern
SAT solvers. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI ’09), pages 399–404, July 2009.

[BBI12] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space tradeoffs in
resolution: Superpolynomial lower bounds for superlinear space. In Proceedings of
the 44th Annual ACM Symposium on Theory of Computing (STOC ’12), pages
213–232, May 2012.

[BG01] Maŕıa Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for
resolution. Computational Complexity, 10(4):261–276, December 2001. Preliminary
version in FOCS ’99.

[BG03] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in
resolution. Random Structures and Algorithms, 23(1):92–109, August 2003.
Preliminary version in CCC ’01.

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 27/25

References III

[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal
separation of space and length in resolution. In Proceedings of the 49th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’08), pages
709–718, October 2008.

[BN11] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity:
Separations and trade-offs via substitutions. In Proceedings of the 2nd Symposium
on Innovations in Computer Science (ICS ’11), pages 401–416, January 2011.

[BNT13] Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for
polynomial calculus. In Proceedings of the 45th Annual ACM Symposium on
Theory of Computing (STOC ’13), pages 813–822, May 2013.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made
simple. Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in
STOC ’99.

[CNF] CNFgen formula generator and tools.
https://github.com/MassimoLauria/cnfgen.

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of
the ACM, 35(4):759–768, October 1988.

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 28/25

https://github.com/MassimoLauria/cnfgen

References IV

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and
Computation, 171(1):84–97, 2001. Preliminary versions of these results appeared in
STACS ’99 and CSL ’99.

[Glu] The Glucose SAT solver. http://www.labri.fr/perso/lsimon/glucose/.

[JMNŽ12] Matti Järvisalo, Arie Matsliah, Jakob Nordström, and Stanislav Živný. Relating
proof complexity measures and practical hardness of SAT. In Proceedings of the
18th International Conference on Principles and Practice of Constraint
Programming (CP ’12), volume 7514 of Lecture Notes in Computer Science, pages
316–331. Springer, October 2012.

[Kri85] Balakrishnan Krishnamurthy. Short proofs for tricky formulas. Acta Informatica,
22(3):253–275, August 1985.

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 29/25

http://www.labri.fr/perso/lsimon/glucose/

References V

[KSM11] Hadi Katebi, Karem A. Sakallah, and João P. Marques-Silva. Empirical study of the
anatomy of modern SAT solvers. In Proceedings of the 14th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’11), volume
6695 of Lecture Notes in Computer Science, pages 343–356. Springer, June 2011.

[Kul99] Oliver Kullmann. Investigating a general hierarchy of polynomially decidable classes
of CNF’s based on short tree-like resolution proofs. Technical Report TR99-041,
Electronic Colloquium on Computational Complexity (ECCC), 1999.

[LENV16] Massimo Lauria, Jan Elffers, Jakob Nordström, and Marc Vinyals. CNFgen: a
generator of crafted CNF formulas. Manuscript in preparation, 2016.

[Mar06] Klas Markström. Locality and hard SAT-instances. Journal on Satisfiability, Boolean
Modeling and Computation, 2(1-4):221–227, 2006.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
Design Automation Conference (DAC ’01), pages 530–535, June 2001.

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 30/25

References VI

[MN14] Mladen Mikša and Jakob Nordström. Long proofs of (seemingly) simple formulas.
In Proceedings of the 17th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer
Science, pages 121–137. Springer, July 2014.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May
1999. Preliminary version in ICCAD ’96.

[PD11] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT
solvers as resolution engines. Artificial Intelligence, 175:512–525, February 2011.
Preliminary version in CP ’09.

[SM11] Karem A. Sakallah and João Marques-Silva. Anatomy and empirical evaluation of
modern SAT solvers. Bulletin of the European Association for Theoretical
Computer Science, 103:96–121, February 2011.

[Spe10] Ivor Spence. sgen1: A generator of small but difficult satisfiability benchmarks.
Journal of Experimental Algorithmics, 15:1.2:1.1–1.2:1.15, March 2010.

[St̊a96] Gunnar St̊almarck. Short resolution proofs for a sequence of tricky formulas. Acta
Informatica, 33(3):277–280, May 1996.

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 31/25

References VII

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional calculus. In A. O.
Silenko, editor, Structures in Constructive Mathematics and mathematical Logic,
Part II, pages 115–125. Consultants Bureau, New York-London, 1968.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,
34(1):209–219, January 1987.

[VS10] Allen Van Gelder and Ivor Spence. Zero-one designs produce small hard SAT
instances. In Proceedings of the 13th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’10), volume 6175 of Lecture Notes in
Computer Science, pages 388–397. Springer, July 2010.

Jakob Nordström (KTH) Seeking Practical Insights From Theoretical Benchmarks Pragmatics of SAT ’16 32/25

	Main Talk
	Introduction
	The Research Question
	Our Approach

	Theory Background
	Resolution Proof System
	Benchmark Formulas

	Empirical Evaluation
	Experiment Set-up
	Some Tentative Findings

	Concluding Slides
	Appendix

