Deterministic Parallel DPLL (DP)ZLL

Deterministic Parallel DPLL (DP)?LL

Youssef Hamadi 1>  Said Jabbour® Cédric Piette* Lakhdar Sais®

1 Microsoft Research
7 J J Thomson Avenue
Cambridge, United Kingdom
2LIX Ecole Polytechnique, F91128 Palaiseau, France
3université Lille-Nord de France, Artois, F-62307 Lens

CRIL, F-62307 Lens
CNRS UMR 8188, F-62307 Lens

youssef h@ri crosof t. com {]j abbour, piette, sais}@ril.fr

Pragmatics of SAT — POS’11

june, 18 2011


youssefh@microsoft.com
{jabbour,piette,sais}@cril.fr

Deterministic Parallel DPLL (DP')ZLL

/[SAT : some keys

2 categories of approaches

@ Divide and conquer

@ Incrementally divides the search space into subspaces
@ Each subspace is allocated to a sequential search worker
9 Needs load balancing strategies

@ Portfolio

<

Exploits the complementarity between different sequential DPLL strategies
9 Each worker deals with the CNF given in input

9 Cooperation betweens workers (nogood exchanges, heuristical values, etc.)
9 Load balancing strategies not needed

Unfortunately, for both categories...

/I Solvers exhibits a non deterministic behavior:

@ in term of reported solutions (if SAT)
@ in term of refutation proofs (if UNSAT)
@ in term of runtimes

N




Deterministic Parallel DPLL (DP')ZLL

Non deterministic behavior of Many SAT

| instance | #vars | #models (diff) [ nH | avg time (o)
[12pipe_bug8 | 117526 | 10 (1) 0 [263(53.32)
|

AProVE09-20 | 33054 | 10 (10) 33.84 | 195 (9.03)
dated-10-13-s | 181082 | 10 (10) 0.67
itox_vc1138 | 150680 | 10 (10)

6.25 (9.30)

| |
| |
[[ACG-20-10p1 | 381708 | 10 (10) [ 142 [ 1452.24 (40.61) |
| |
| |
| |

26.62 | 0.65 (22.99)
md5_47_4 65604 | 10 (10) 34.8 [ 173,9(31,03)
md5_48_1 66892 | 10 (10) 34.76 | 704.74 (74.65)
md5_48_3 66892 | 10 (10) 34.16 | 489.02 (68.96)

| safe-30-h30-sat | 135786 | 10 (10) | 22.32 ] 0.37(0.79) |

[ total-10-19-s [ 331631 [ 10 (10) [ 05 [5.31(6.75) |

| UCG-20-10p1 | 259258 | 10 (10) | 212 [ 768.17 (31.63) |
vmpc_28 784 10 (2) 3.67 [ 34,61(25.92)

vmpc_31 961 8 (1) 0 583.36 (88.65)




Deterministic Parallel DPLL (DP')ZLL

About determinism...

Determinism is the scientific principle that states that for everything that
happens there are conditions such that, given them, nothing else could
happen.

| \

What about //SAT ?

@ Non-reproducibility limits the deployment of SAT parallel technology (e.g.
formal verification: reported bugs cannot be reproduced)

@ Non-reproducibility makes difficult the evaluation of //SAT solvers

@ + any procedure using a //SAT solver becomes itselft non déterministic !
(harder to debug, etc.)

@ Phenomena due to the lack of synchronisation between cores, in order
to maximize performances

@ Determinism and efficiency not compatibles?




Deterministic Parallel DPLL (DP)ZLL

Deterministic Parallel DPLL (DP)?LL

Data : a CNF formula F;
Result : true if F is satisfiable; false otherwise
begin
<inParallel, 0 <i < #core>
answer([i] = search(corej) ;
for (i = 0; i < #core; i++) do
if (answer|[i]! = unknown) then
return answer(i];

N oo 0 b~ W N P

end




Deterministic Parallel DPLL (DP')ZLL

Data : a CNF formula F;
Result : answer[i] = true if F is satisfiable; false if unsatisfiable, unknown otherwise
1 begin
2 nbConflicts=0;
3 while (true) do
4 if (Ipropagate()) then
5 nbConflicts++;
6 if (topLevel) then
7 answer[i]= false;
8 goto barriery;
9 learntClause=analyse();

10 exporteExtraClause(learntClause);
11 backtrack();

12 if (nbConflicts % period == 0) then
13 barrier;: <barrier >

14 if (3j|answer[j]! = unknown) then
15 return answerfi];

16 updatePeriod()();

17 importExtraClauses();

18 <barrier >

19 else

20 if (decide()) then

21 answer[i]= true;

22 goto barriery;

23 end




Deterministic Parallel DPLL (DP')ZLL

Which period to synchronize?

A necessary tradeoff...

@ Frequent synchronisations: a lot of time is wasted by the cores,
waiting for each other

@ Rare synchronisations : poor dynamics of information exchange
(nogood) — loss of efficiency

@ Empirically: some cores reach the barrier "faster" than the others
@ Why? unit propagation (90 % CPU time) faster w.r.t. some cores
@ Numerous factors: number of learnt clauses, etc.

Hard to predict unit propagation speed
— Use the size of the learnt clauses database (heuristics)




Deterministic Parallel DPLL (DP')ZLL

A dynamic synchronization

period ™ = o + (1 — S¥) x a where:
9 0 <i < #core
@ o: constant parameter

) periodik+l : sequence of time (in number of conflicts) between
synchronization period k and k + 1 for core i

@ m = maxy;(|]AK|), ol 0 < i < #core  size of the largest learnt clauses
database

k
o sk = 14l

m

ratio between the size of learnt clauses database of u; and m




Deterministic Parallel DPLL (DP)ZLL

Empirical Environment

o
o
o
o
o

CPU: Intel Xeon 3GHz (4 cores)

RAM: 2 GB

OS : Linux CentOS 4.1. (noyau 2.6.9)

Cutoff (for each instance) : 900 seconds
Benchmarks: instances proposed in SAT Race 2010

©

Deterministic algorithm implemented on top of Many SAT*

!hinaries & source code available on the Many SAT website



Deterministic Parallel DPLL (_DP)ZLL

Performance with static synchronization

T
Sequential y
ManySat 1.1 ----—--- /
L (DP)2LL_static(1) - i |
1080, (DP)2LL_static(100) ol
(DP)2LL_siatic(10000) ———— £ A
/f /J,'
@ 8000 [ RN i
c / . £y oA
(o] '
\(_n/ 3 7 /-’
(o)} L g8 4 /’ _
g 6000 [ 5
= e -
8 _// o
T ;
g 4000 4 2 i
= s
o P
2000 1
0 L L 1 L 1
50 55 60 65 70 75

#solved instances



Deterministic Parallel DPLL (_DP)ZLL

Performance with dynamic synchronization

T
Sequential
ManySat 1.1 ------- / i
1 (DP)2LL_static(100) L S
10000 (DPY2LL_dynamic -y
T 8000 - .
c
o
(S
@
2.
@ - Y o
2 6000
o S
@ o
o
g 4000 | .
=
Q
2000 -
0 1 1 1 L L
50 55 60 65 70 75

#solved instances



Deterministic Parallel DPLL (DP)ZLL

Conclusion

In summary...

@ Simple but efficient method that enables to make deterministic parallel
solvers

@ Non negligible waiting time
@ Dynamic synchronization approach reduces this waiting time

Taking better advantage of the synchronization step for new interactions
between cores (e.g. resolution between exchanged nogoods, etc.)

\




