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DPLL-based SAT solvers

Solves a problem in CNF

CNF is an “and of or-s”

¬x1 ∨ ¬x3 ¬x2 ∨ x3 x1 ∨ x2

Uses DPLL(ϕ) algorithm

1 If formula ϕ is trivial, return SAT/UNSAT

2 Picks a variable v to branch on

3 v := true

4 Simplifies formula to ϕ′ and calls DPLL(ϕ′)

5 if SAT, output SAT

6 if UNSAT, v := false

7 Simplifies formula to ϕ′′ and calls DPLL(ϕ′′)

8 if SAT, output SAT

9 if UNSAT, output UNSAT
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Cryptographic problems

Crypto problems are
given in ANF

0 =ab⊕ b⊕ bc

0 =a⊕ d⊕ c⊕ bd

0 =bc⊕ cd⊕ bd

0 =d⊕ ab⊕ 1

Methods to solve ANF

1 Put into matrix, Gauss eliminate:

ab bc cd bd a b c d aug
1 1 0 0 0 1 0 0 0
0 0 0 1 1 0 1 1 0
0 1 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1 1


2 Convert to CNF. Notice: it’s same as above,

but ab = a× b is included, and less info
(rows) needed

3 Other methods (e.g. F4/F5)
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Gaussian elimination

Theory

Solving a Gaussian elim. problem with DPLL-based SAT solvers is
exponentially difficult

Even though Gaussian elimination is poly-time

→ Theoretically, Gauss. elim in SAT solvers is useful

Practise

Designers of SAT solvers have grown accustomed to solving
worst-case exponential problems really fast

But Gauss is different:

Matrix size: n× n, MiniSat time (s)
20 22 24 26 28 30 32 34 36 38

0.02 0.09 0.22 0.8 1.84 8.2 30.9 90.0 331.3 1539.9

Practical usefulness is still elusive

Mate Soos (INRIA SALSA Team) Gauss in SAT solvers 10th of July 2010 6 / 23



Gauss and Crypto

The two approaches

Only-Gauss approach problem: too many rows needed, too large
matrix

Only-SAT approach problem: Can’t “see” the matrix, can’t find
truths from it

A hybrid approach

Executing Gauss. elim. at every decision step in the SAT solver, we can
mix the two approaches

SAT Solver

Gauss

At every decision,
exchange of information

DPLL
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Datastructures, algorithms

Implementation

A-matrix

v10 v8 v9 v12 aug
1 1 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1



N-matrix

v10 v8 v9 v12 aug
1 1 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1


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Datastructures, algorithms

Implementation

A-matrix
with v8 assigned to true
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Datastructures, algorithms

Implementation

A-matrix
with v8 assigned to true

v10 v8 v9 v12 aug
1 − 1 1 1
0 − 1 1 1
0 − 0 1 0
0 − 0 0 0



N-matrix

v10 v8 v9 v12 aug
1 1 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1


Resulting xor-clause:

v8⊕ v12
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Datastructures, algorithms

Implementation

A-matrix
with v8 assigned to true

v10 v8 v9 v12 aug
1 − 1 1 1
0 − 1 1 1
0 − 0 1 0
0 − 0 0 0



N-matrix

v10 v8 v9 v12 aug
1 1 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1


Resulting xor-clause:

v12 = false ← v8⊕ v12
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Row and Column Elimination by XOR — RCX

Example

If variable a is not present anywhere but in 2 XOR-s:

a⊕ b⊕ c⊕ d = false

a⊕ f ⊕ g ⊕ h = false

Then we can remove a, the two XOR-s, and add the XOR:

f ⊕ g ⊕ h⊕ b⊕ c⊕ d = false

Theory

This is variable elimination at the XOR-level

It is equivalent to VE at CNF level

But it doesn’t make sense to do this at CNF level:
→ results in far more (and larger) clauses

For us it helps: removes 1 column (a) and one row from the matrix
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Independent sub-matrixes

Reasoning

Gaussian elimination is approx. O(nm2) algorithm

Making two smaller matrixes from one bigger one leads to speedup

If matrix has non-connected components, cutting up is orthogonal to
algorithm output
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Independent sub-matrixes

Algorithm

Let us build a graph from the XOR-s:

Vertexes are the variables

Edge runs between two vertexes if they appear in an XOR

Independent graph components are extracted

Advantages

In case of 2 roughly equal independent sub-matrixes:
cnm2 → 2c′(n/2)(m/2)2 = c′nm2/4
Better understanding of problem structure:

E.g. number of shift registers in a cipher
Number of S-boxes in cipher
Problem similarities
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Not treating parts of the matrix

Reasoning

Let’s assume the leftmost column updated is the cth

Let’s assume the topmost “1” in this column was in row r

Then, the rows above r cannot have changed their leading 1

Example

A

1
1

1
1

0
1

B

C

r

c
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Auto turn-off

If Gauss. doesn’t bring enough benefits, it is switched off

Performance is measured by percentage of times confl/prop is
generated

Conflict is preferred — we can return immediately
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More efficient data structure

Data structure

Bits are packed — faster row xor/swap

Augmented column is non-packed — faster checking

Two matrixes are stored as an interlaced continuous array

A[0][0] . . . A[0][n], N [0][0] . . . N [0][n], . . . A[m][0] . . . N [m][n]

A N

Start

End

Advantages

When doing row-xor both matrixes’ rows are xor-ed

When doing row-swap both matrixes’ rows are swapped

We can now operate on one continuous data in both operations
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Results overview

Before: “Extending SAT Solvers to Cryptographic Problems”

Worked only on few instances

Had to be tuned for each instance

Gave approx. 5-10% speedup

Now: “Enhanced Gaussian Elimination in DPLL-based SAT Solvers”

Matrix discovery is automatic

Less tuning necessary – turn-off is automatic

Works on more types of instances

Gives up to 30%-45% speedup
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Results — RCX

Table: Avg. time (in sec.) to solve 100 random problems

Bivium
no. help bits 55 54 53 52 51 50

no RCX + no Gauss 0.69 1.26 1.38 2.19 6.25 10.40
RCX + no Gauss 0.65 0.89 1.30 2.36 5.76 8.87
no RCX + Gauss 0.55 0.91 1.06 1.89 3.87 7.76
RCX + Gauss 0.52 0.69 0.90 1.85 3.81 6.20

Vars removed on avg 36.27 36.42 37.30 37.07 38.32 37.94
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Results — Gauss

Table: Avg. time (in sec.) to solve 100 random problems

Bivium
no. help bits 54 53 52 51 50 49 48 47 46 45

RCX 0.89 1.30 2.36 5.76 8.87 14.75 35.68 79.83 104.90 193.98
Gauss+RCX 0.69 0.90 1.85 3.81 6.20 9.55 20.86 35.25 75.68 137.44

Trivium
no. help bits 157 156 155 154 153

RCX 66.57 86.42 146.17 261.75 472.27
Gauss+RCX 40.57 68.16 84.13 146.35 259.07
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Results — Gauss cont.

Table: Avg. time (in sec.) to solve 100 random problems

HiTag2
no. help bits 15 14 13 12 11 10 9

RCX 4.78 11.73 30.70 76.44 233.61 719.86 1666.99
Gauss+RCX 4.76 11.64 29.03 77.19 220.64 701.46 1636.77

Grain
no. help bits 109 108 107 106

RCX 168.51 291.29 540.14 1123.08
Gauss+RCX 193.09 359.58 608.47 1133.75
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Conclusions

Conclusions

Gaussian elimination can bring benefits for specific applications

Better understanding of the problem could be gained

Possible future work

Automatic cut-off value finding

Better heuristics to decide when to execute Gaussian elim.

Add support for sparse matrix representation
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Thank you for your time
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