Improved Exact Solver for the Weighted Max-SAT Problem

Adrian Kügel

Institute of Theoretical Computer Science, University of Ulm

July 10th, 2010

ulm university universität **UUIM**

《日》 《圖》 《圖》 《目》

Motivation

- Max-SAT is NP-hard \rightarrow no efficient algorithm known
- Applications
 - Bioinformatics \rightarrow protein structure similarity
 - Electronic markets \rightarrow combinatorial auctions
 - Sports scheduling \rightarrow break minimization
 - Probabilistic reasoning \rightarrow Most Probable Explanation (MPE)

Institute of Theoretical Computer Science, University of Ulm

Max-SAT Definition

- Given a list of clauses C_1, \ldots, C_m
- Clause consists of disjunction of literals (*I*₁ ∨ *I*₂ ∨ . . . ∨ *I_k*)
- Literal is either x_i or $\overline{x_i}$
- Find assignment of Boolean variables x_1, \ldots, x_n that satisfies maximum number of clauses
- Clause is satisfied if at least one literal is assigned true

Instantiating a variable

- Assign a value to a variable x_i
- Remove literals from the clauses which have been assigned false
- Remove clauses which become satisfied

Institute of Theoretical Computer Science, University of Ulm

Example

$$C_1 = (x_1 \lor x_2 \lor x_6)$$

$$C_2 = (x_2 \lor \overline{x}_6)$$

$$C_3 = (\overline{x}_1 \lor x_3)$$

$$C_4 = (\overline{x}_1 \lor x_4)$$

$$C_5 = (\overline{x}_3 \lor \overline{x}_4)$$

$$C_6 = (x_1 \lor \overline{x}_2 \lor x_5)$$

$$C_7 = (x_1 \lor \overline{x}_2 \lor \overline{x}_5)$$

$$\rightarrow \text{assign } x_1 = \text{true}$$

イロン イボン イヨン イヨン Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$C_1 = (\operatorname{true} \lor x_2 \lor x_6)$$

$$C_2 = (x_2 \lor \overline{x}_6)$$

$$C_3 = (\operatorname{false} \lor x_3)$$

$$C_4 = (\operatorname{false} \lor x_4)$$

$$C_5 = (\overline{x}_3 \lor \overline{x}_4)$$

$$C_6 = (\operatorname{true} \lor \overline{x}_2 \lor x_5)$$

$$C_7 = (\operatorname{true} \lor \overline{x}_2 \lor \overline{x}_5)$$

イロン イボン イヨン イヨン Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$C_2 = (x_2 \lor \overline{x}_6)$$

$$C_3 = (x_3)$$

$$C_4 = (x_4)$$

$$C_5 = (\overline{x}_3 \lor \overline{x}_4)$$

Adrian Kügel

Institute of Theoretical Computer Science, University of Ulm

Branch and Bound for Max-SAT

- Search space is a binary tree with 2ⁿ nodes
- Each inner node corresponds to partial assignment
- Leaf nodes correspond to complete assignments
- Branching:
 - Select unassigned variable
 - Assign value
 - Process remaining clauses recursively
 - Assign opposite value
 - Process remaining clauses recursively

Institute of Theoretical Computer Science, University of Ulm

Lower Bound

- Idea: (over)estimate the best possible value of a subtree
- If estimation is worse than best value found so far, subtree can be skipped
- For minimization problems: lower bound $\mathsf{lb} \leq \mathsf{minimum}$ value in subtree
- Simplest lower bound Max-SAT: number of clauses unsatisfied by partial assignment
- Better: calculate lower bound by finding disjoint inconsistent subformulas

伺 と く ヨ と く ヨ と

Finding inconsistent subformulas by unit propagation

- Unit clauses can only be satisfied by satisfying the literal
- Propagate literals of unit clauses until empty clause is derived
- Reconstruct which clauses are needed to derive empty clause

Institute of Theoretical Computer Science, University of Ulm

Example

$$C_{2} = (x_{2} \lor \overline{x}_{3})$$

$$C_{3} = (x_{3})$$

$$C_{4} = (x_{4})$$

$$C_{5} = (\overline{x}_{3} \lor \overline{x}_{4})$$

$$\rightarrow \text{Assign } x_{3} = \text{true}$$

イロン イボン イヨン イヨン Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$C_2 = (x_2 \lor \text{false})$$

$$C_3 = (\text{true})$$

$$C_4 = (x_4)$$

$$C_5 = (\text{false} \lor \overline{x}_4)$$

イロン イボン イヨン イヨン Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$C_2 = (x_2)$$

$$C_4 = (x_4)$$

$$C_5 = (\overline{x}_4)$$

$$\rightarrow \text{Assign } x_4 = \text{true}$$

イロン イボン イヨン イヨン Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$C_2 = (x_2)$$
$$C_4 = (true)$$
$$C_5 = (false)$$

(ロ) (部) (音) (音) (音) (つ) (の)

Adrian Kügel

Institute of Theoretical Computer Science, University of Ulm

Example

$$C_2 = (x_2)$$

 $C_5 = ()$

・ロト < 回 ト < 臣 ト < 臣 ト 三 の < ()</p>

Adrian Kügel

Institute of Theoretical Computer Science, University of Ulm

Implication graph

- 4 回 > - 4 回 > - 4 回 > Institute of Theoretical Computer Science, University of Ulm

2

One step further: failed literal detection

- Add a unit literal I to the formula
- Use unit propagation to detect inconsistent subformula F'
- $S_I = F' \setminus I$ is resolution proof of \overline{I}
- / is called a failed literal
- If I and \overline{I} are failed literals, $S_I \cup S_{\overline{I}}$ is inconsistent subformula

Improved algorithm

- Use failed literal detection during unit propagation to get new unit literals
- Whenever no unit literal is left, try to find a failed literal /
- If found
 - extract and store subformula S_l which is in conflict with l
 - add \overline{I} to the formula and continue with unit propagation

Difference between algorithms

- improved algorithm starts with unit propagation and uses failed literal detection in simplified formula
- after finding a failed literal *I*, we do not stop if \overline{I} is no failed literal, but continue in simplified formula after propagating \overline{I}
- improved algorithm can be seen as a restricted sat solver (no branches, only unit clause learning) with unsatisfiable core extraction

Example

$$C_{1} = (x_{1} \lor x_{2} \lor x_{3})$$

$$C_{2} = (x_{2} \lor \overline{x}_{3})$$

$$C_{3} = (\overline{x}_{1} \lor x_{3})$$

$$C_{4} = (\overline{x}_{1} \lor x_{4})$$

$$C_{5} = (\overline{x}_{3} \lor \overline{x}_{4})$$

$$C_{6} = (x_{1} \lor \overline{x}_{2} \lor x_{5})$$

$$C_{7} = (x_{1} \lor \overline{x}_{2} \lor \overline{x}_{5})$$

 \rightarrow no unit literal, starting failed literal detection

Adrian Kügel

・ロト ・回ト ・ヨト ・ヨト Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$C_1 = (x_1 \lor x_2 \lor x_3)$$

$$C_2 = (x_2 \lor \overline{x}_3)$$

$$C_3 = (\overline{x}_1 \lor x_3)$$

$$C_4 = (\overline{x}_1 \lor x_4)$$

$$C_5 = (\overline{x}_3 \lor \overline{x}_4)$$

$$C_6 = (x_1 \lor \overline{x}_2 \lor x_5)$$

$$C_7 = (x_1 \lor \overline{x}_2 \lor \overline{x}_5)$$

$$C_8 = (x_1)$$

$$\rightarrow \text{ adding } x_1 \text{ to the formula}$$

$$\rightarrow \text{ assign } x_1 = \text{true}$$

・ロト ・回ト ・ヨト ・ヨト Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$C_2 = (x_2 \lor \overline{x}_3)$$

$$C_3 = (x_3)$$

$$C_4 = (x_4)$$

$$C_5 = (\overline{x}_3 \lor \overline{x}_4)$$
 $\rightarrow \dots$ continue as in the example before

イロン イボン イヨン イヨン Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$S_{x_1} = \{(x_3), (x_4), (\overline{x}_3 \lor \overline{x}_4)\}$$

 $\rightarrow \text{ add } \overline{x}_1 \text{ to the formula}$

イロン イボン イヨン イヨン Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$C_{1} = (x_{1} \lor x_{2} \lor x_{3})$$

$$C_{2} = (x_{2} \lor \overline{x}_{3})$$

$$C_{3} = (\overline{x}_{1} \lor x_{3})$$

$$C_{4} = (\overline{x}_{1} \lor x_{4})$$

$$C_{5} = (\overline{x}_{3} \lor \overline{x}_{4})$$

$$C_{6} = (x_{1} \lor \overline{x}_{2} \lor x_{5})$$

$$C_{7} = (x_{1} \lor \overline{x}_{2} \lor \overline{x}_{5})$$

$$C_{8} = (\overline{x}_{1})$$

$$\rightarrow \text{ assign } x_{1} = \text{ false}$$

イロン イボン イヨン イヨン Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$C_1 = (x_2 \lor x_3)$$

$$C_2 = (x_2 \lor \overline{x}_3)$$

$$C_5 = (\overline{x}_3 \lor \overline{x}_4)$$

$$C_6 = (\overline{x}_2 \lor x_5)$$

$$C_7 = (\overline{x}_2 \lor \overline{x}_5)$$

 \rightarrow failed literal detection, add x_2 to the formula

Adrian Kügel

・ロト ・回ト ・ヨト ・ヨト Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$C_1 = (x_2 \lor x_3)$$

$$C_2 = (x_2 \lor \overline{x}_3)$$

$$C_5 = (\overline{x}_3 \lor \overline{x}_4)$$

$$C_6 = (\overline{x}_2 \lor x_5)$$

$$C_7 = (\overline{x}_2 \lor \overline{x}_5)$$

$$C_8 = (x_2)$$

$$\rightarrow \text{ assign } x_2 = \text{true}$$

イロン イボン イヨン イヨン Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$C_5 = (\overline{x}_3 \lor \overline{x}_4)$$

$$C_6 = (x_5)$$

$$C_7 = (\overline{x}_5)$$

$$\rightarrow \text{ assign } x_5 = \text{true}$$

イロン イボン イヨン イヨン Institute of Theoretical Computer Science, University of Ulm

-2

Example

 $C_{5} = (\overline{x}_{3} \lor \overline{x}_{4})$ $C_{7} = ()$ $\rightarrow \text{ empty clause found}$ $\rightarrow x_{2} \text{ is failed literal}$ $\rightarrow S_{x_{2}} = \{(\overline{x}_{2} \lor x_{5}), (\overline{x}_{2} \lor \overline{x}_{5})\}$

Adrian Kügel

Institute of Theoretical Computer Science, University of Ulm

◆聞♪ ◆注♪ ◆注♪

3

Example

$$C_{1} = (x_{2} \lor x_{3})$$

$$C_{2} = (x_{2} \lor \overline{x}_{3})$$

$$C_{5} = (\overline{x}_{3} \lor \overline{x}_{4})$$

$$C_{6} = (\overline{x}_{2} \lor x_{5})$$

$$C_{7} = (\overline{x}_{2} \lor \overline{x}_{5})$$

$$C_{8} = (\overline{x}_{2})$$

$$\rightarrow \text{ add } \overline{x}_{2} \text{ to the formula}$$

 \rightarrow assign $x_2 =$ talse

・ロト ・回ト ・ヨト ・ヨト Institute of Theoretical Computer Science, University of Ulm

-2

Example

$$C_1 = (x_3)$$

$$C_2 = (\overline{x}_3)$$

$$C_5 = (\overline{x}_3 \lor \overline{x}_4)$$

$$\rightarrow \text{assign } x_3 = \text{true}$$

イロン イボン イヨン イヨン Institute of Theoretical Computer Science, University of Ulm

-2

Example

- $\begin{array}{l} C_2 = () \\ C_5 = (\overline{x}_4) \end{array}$
- \rightarrow empty clause found
- \rightarrow derive inconsistent subformula with implication graph

Institute of Theoretical Computer Science, University of Ulm

・ 回 ト ・ 注 ト ・

Optimizations

- Assign priority order to variables for failed literal detection
- Decrease priority of variables for which a failed literal has been found
- For each variable, check only the literal which occurs in more clauses
- Sometimes more than one failed literal can be detected by only one failed literal detection → use failed literal *I* for which *S_I* is smallest.

Example

 $C_{1} = \overline{x}_{1} \lor x_{2}$ $C_{2} = \overline{x}_{2} \lor x_{3}$ $C_{3} = \overline{x}_{3} \lor x_{4}$ $C_{4} = \overline{x}_{3} \lor x_{5}$ $C_{5} = \overline{x}_{4} \lor \overline{x}_{5}$ $C_{3}, C_{4}, C_{5} \text{ are resolution proof of } x_{3}$ $\rightarrow x_{1}, x_{2} \text{ and } x_{3} \text{ are failed literals}$

Adrian Kügel

 < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Data structure

- for each literal keep list of clause pointers to clauses where literal occurs
- support lazy deletion of clause pointers
- each clause has a delete flag and deletion timestamp
- clause pointers are removed during traversal of clause pointer list when delete flag of clause is set to true
- when backtracking, it can be checked in constant time if clause pointer was deleted or not

Comparison of runtimes

Weighted Max-2-SAT formulas with 100 variables

< (1) > < (2) > Institute of Theoretical Computer Science, University of Ulm

э

3

Comparison of traversed nodes of search tree

Weighted Max-2-SAT formulas with 100 variables

Weighted Max-2-SAT formulas with 120 variables

Institute of Theoretical Computer Science, University of Ulm

Conclusions

- New propagation algorithm improves lower bound
- Smaller part of the search tree needs to be traversed
- Data structure improves runtime for high clauses-to-variables ratio

Any questions?

Thank you for your attention!

Adrian Kügel

Institute of Theoretical Computer Science, University of Ulm